Questions — AQA FP2 (142 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP2 2014 June Q8
6 marks
8 A curve has equation \(y = 2 \sqrt { x - 1 }\), where \(x > 1\). The length of the arc of the curve between the points on the curve where \(x = 2\) and \(x = 9\) is denoted by \(s\).
  1. Show that \(s = \int _ { 2 } ^ { 9 } \sqrt { \frac { x } { x - 1 } } \mathrm {~d} x\).
    1. Show that \(\cosh ^ { - 1 } 3 = 2 \ln ( 1 + \sqrt { 2 } )\).
    2. Use the substitution \(x = \cosh ^ { 2 } \theta\) to show that $$s = m \sqrt { 2 } + \ln ( 1 + \sqrt { 2 } )$$ where \(m\) is an integer.
      [0pt] [6 marks]
      \includegraphics[max width=\textwidth, alt={}]{5287255f-5ac4-401a-b850-758257412ff7-20_1638_1709_1069_153}
      \includegraphics[max width=\textwidth, alt={}, center]{5287255f-5ac4-401a-b850-758257412ff7-24_2489_1728_221_141}
AQA FP2 2016 June Q1
4 marks
1
  1. Given that \(\mathrm { f } ( r ) = \frac { 1 } { 4 r - 1 }\), show that $$\mathrm { f } ( r ) - \mathrm { f } ( r + 1 ) = \frac { A } { ( 4 r - 1 ) ( 4 r + 3 ) }$$ where \(A\) is an integer.
  2. Use the method of differences to find the value of \(\sum _ { r = 1 } ^ { 50 } \frac { 1 } { ( 4 r - 1 ) ( 4 r + 3 ) }\), giving your answer as a fraction in its simplest form.
    [0pt] [4 marks]
AQA FP2 2016 June Q2
2 The cubic equation \(3 z ^ { 3 } + p z ^ { 2 } + 17 z + q = 0\), where \(p\) and \(q\) are real, has a root \(\alpha = 1 + 2 \mathrm { i }\).
    1. Write down the value of another non-real root, \(\beta\), of this equation.
    2. Hence find the value of \(\alpha \beta\).
  1. Find the value of the third root, \(\gamma\), of this equation.
  2. Find the values of \(p\) and \(q\).
AQA FP2 2016 June Q3
6 marks
3 The arc of the curve with equation \(y = 4 - \ln \left( 1 - x ^ { 2 } \right)\) from \(x = 0\) to \(x = \frac { 3 } { 4 }\) has length \(s\).
  1. Show that \(s = \int _ { 0 } ^ { \frac { 3 } { 4 } } \left( \frac { 1 + x ^ { 2 } } { 1 - x ^ { 2 } } \right) \mathrm { d } x\).
  2. Find the value of \(s\), giving your answer in the form \(p + \ln N\), where \(p\) is a rational number and \(N\) is an integer.
    [0pt] [6 marks]
    \includegraphics[max width=\textwidth, alt={}]{a629b09d-3633-4dbd-83db-7eb89577438c-06_1870_1717_840_150}
AQA FP2 2016 June Q4
4 marks
4
  1. Given that \(y = \tan ^ { - 1 } \sqrt { ( 3 x ) }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer in terms of \(x\).
  2. Hence, or otherwise, show that \(\int _ { \frac { 1 } { 3 } } ^ { 1 } \frac { 1 } { ( 1 + 3 x ) \sqrt { x } } \mathrm {~d} x = \frac { \sqrt { 3 } \pi } { n }\), where \(n\) is an integer.
    [0pt] [4 marks]
AQA FP2 2016 June Q5
5 marks
5
  1. Find the modulus of the complex number \(- 4 \sqrt { 3 } + 4 \mathrm { i }\), giving your answer as an integer.
  2. The locus of points, \(L\), satisfies the equation \(| z + 4 \sqrt { 3 } - 4 \mathrm { i } | = 4\).
    1. Sketch the locus \(L\) on the Argand diagram below.
    2. The complex number \(w\) lies on \(L\) so that \(- \pi < \arg w \leqslant \pi\). Find the least possible value of arg \(w\), giving your answer in terms of \(\pi\).
  3. Solve the equation \(z ^ { 3 } = - 4 \sqrt { 3 } + 4 \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
    [0pt] [5 marks]
AQA FP2 2016 June Q6
11 marks
6
  1. Given that \(y = \sinh x\), use the definition of \(\sinh x\) in terms of \(\mathrm { e } ^ { x }\) and \(\mathrm { e } ^ { - x }\) to show that \(x = \ln \left( y + \sqrt { y ^ { 2 } + 1 } \right)\).
  2. A curve has equation \(y = 6 \cosh ^ { 2 } x + 5 \sinh x\).
    1. Show that the curve has a single stationary point and find its \(x\)-coordinate, giving your answer in the form \(\ln p\), where \(p\) is a rational number.
    2. The curve lies entirely above the \(x\)-axis. The region bounded by the curve, the coordinate axes and the line \(x = \cosh ^ { - 1 } 2\) has area \(A\). Show that $$A = a \cosh ^ { - 1 } 2 + b \sqrt { 3 } + c$$ where \(a\), \(b\) and \(c\) are integers.
      [0pt] [5 marks] \(7 \quad\) Given that \(p \geqslant - 1\), prove by induction that, for all integers \(n \geqslant 1\), $$( 1 + p ) ^ { n } \geqslant 1 + n p$$ [6 marks]
AQA FP2 2016 June Q8
8
  1. By applying de Moivre's theorem to \(( \cos \theta + i \sin \theta ) ^ { 4 }\), where \(\cos \theta \neq 0\), show that $$( 1 + i \tan \theta ) ^ { 4 } + ( 1 - i \tan \theta ) ^ { 4 } = \frac { 2 \cos 4 \theta } { \cos ^ { 4 } \theta }$$
  2. Hence show that \(z = \mathrm { i } \tan \frac { \pi } { 8 }\) satisfies the equation \(( 1 + z ) ^ { 4 } + ( 1 - z ) ^ { 4 } = 0\), and express the three other roots of this equation in the form \(\mathrm { i } \tan \phi\), where \(0 < \phi < \pi\).
  3. Use the results from part (b) to find the values of:
    1. \(\tan ^ { 2 } \frac { \pi } { 8 } \tan ^ { 2 } \frac { 3 \pi } { 8 }\);
    2. \(\tan ^ { 2 } \frac { \pi } { 8 } + \tan ^ { 2 } \frac { 3 \pi } { 8 }\).
      \includegraphics[max width=\textwidth, alt={}]{a629b09d-3633-4dbd-83db-7eb89577438c-23_2488_1709_219_153}
      \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}
AQA FP2 2006 January Q1
1
  1. Show that $$\frac { 1 } { r ^ { 2 } } - \frac { 1 } { ( r + 1 ) ^ { 2 } } = \frac { 2 r + 1 } { r ^ { 2 } ( r + 1 ) ^ { 2 } }$$
  2. Hence find the sum of the first \(n\) terms of the series $$\frac { 3 } { 1 ^ { 2 } \times 2 ^ { 2 } } + \frac { 5 } { 2 ^ { 2 } \times 3 ^ { 2 } } + \frac { 7 } { 3 ^ { 2 } \times 4 ^ { 2 } } + \ldots$$
AQA FP2 2006 January Q2
2 The cubic equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ where \(p , q\) and \(r\) are real, has roots \(\alpha , \beta\) and \(\gamma\).
  1. Given that $$\alpha + \beta + \gamma = 4 \quad \text { and } \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 20$$ find the values of \(p\) and \(q\).
  2. Given further that one root is \(3 + \mathrm { i }\), find the value of \(r\).
AQA FP2 2006 January Q3
3 The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by $$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$
  1. Show that \(z _ { 1 } = \mathrm { i }\).
  2. Show that \(\left| z _ { 1 } \right| = \left| z _ { 2 } \right|\).
  3. Express both \(z _ { 1 }\) and \(z _ { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Draw an Argand diagram to show the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 1 } + z _ { 2 }\).
  5. Use your Argand diagram to show that $$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$
AQA FP2 2006 January Q4
4
  1. Prove by induction that $$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$ for all integers \(n \geqslant 1\).
  2. Show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$
AQA FP2 2006 January Q5
5 The complex number \(z\) satisfies the relation $$| z + 4 - 4 i | = 4$$
  1. Sketch, on an Argand diagram, the locus of \(z\).
  2. Show that the greatest value of \(| z |\) is \(4 ( \sqrt { 2 } + 1 )\).
  3. Find the value of \(z\) for which $$\arg ( z + 4 - 4 \mathrm { i } ) = \frac { 1 } { 6 } \pi$$ Give your answer in the form \(a + \mathrm { i } b\).
AQA FP2 2006 January Q6
6 It is given that \(z = \mathrm { e } ^ { \mathrm { i } \theta }\).
    1. Show that $$z + \frac { 1 } { z } = 2 \cos \theta$$ (2 marks)
    2. Find a similar expression for $$z ^ { 2 } + \frac { 1 } { z ^ { 2 } }$$ (2 marks)
    3. Hence show that $$z ^ { 2 } - z + 2 - \frac { 1 } { z } + \frac { 1 } { z ^ { 2 } } = 4 \cos ^ { 2 } \theta - 2 \cos \theta$$ (3 marks)
  1. Hence solve the quartic equation $$z ^ { 4 } - z ^ { 3 } + 2 z ^ { 2 } - z + 1 = 0$$ giving the roots in the form \(a + \mathrm { i } b\).
AQA FP2 2006 January Q7
7
  1. Use the definitions $$\sinh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } - \mathrm { e } ^ { - \theta } \right) \quad \text { and } \quad \cosh \theta = \frac { 1 } { 2 } \left( \mathrm { e } ^ { \theta } + \mathrm { e } ^ { - \theta } \right)$$ to show that:
    1. \(2 \sinh \theta \cosh \theta = \sinh 2 \theta\);
    2. \(\cosh ^ { 2 } \theta + \sinh ^ { 2 } \theta = \cosh 2 \theta\).
  2. A curve is given parametrically by $$x = \cosh ^ { 3 } \theta , \quad y = \sinh ^ { 3 } \theta$$
    1. Show that $$\left( \frac { \mathrm { d } x } { \mathrm {~d} \theta } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} \theta } \right) ^ { 2 } = \frac { 9 } { 4 } \sinh ^ { 2 } 2 \theta \cosh 2 \theta$$
    2. Show that the length of the arc of the curve from the point where \(\theta = 0\) to the point where \(\theta = 1\) is $$\frac { 1 } { 2 } \left[ ( \cosh 2 ) ^ { \frac { 3 } { 2 } } - 1 \right]$$
AQA FP2 2007 January Q1
1
  1. Given that $$4 \cosh ^ { 2 } x = 7 \sinh x + 1$$ find the two possible values of \(\sinh x\).
  2. Hence obtain the two possible values of \(x\), giving your answers in the form \(\ln p\).
AQA FP2 2007 January Q2
2
  1. Sketch on one diagram:
    1. the locus of points satisfying \(| z - 4 + 2 \mathrm { i } | = 2\);
    2. the locus of points satisfying \(| z | = | z - 3 - 2 \mathrm { i } |\).
  2. Shade on your sketch the region in which
    both $$| z - 4 + 2 i | \leqslant 2$$ and $$| z | \leqslant | z - 3 - 2 \mathrm { i } |$$
AQA FP2 2007 January Q3
3 The cubic equation $$z ^ { 3 } + 2 ( 1 - \mathrm { i } ) z ^ { 2 } + 32 ( 1 + \mathrm { i } ) = 0$$ has roots \(\alpha , \beta\) and \(\gamma\).
  1. It is given that \(\alpha\) is of the form \(k \mathrm { i }\), where \(k\) is real. By substituting \(z = k \mathrm { i }\) into the equation, show that \(k = 4\).
  2. Given that \(\beta = - 4\), find the value of \(\gamma\).
AQA FP2 2007 January Q4
4
  1. Given that \(y = \operatorname { sech } t\), show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - \operatorname { sech } t \tanh t\);
    2. \(\left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \operatorname { sech } ^ { 2 } t - \operatorname { sech } ^ { 4 } t\).
  2. The diagram shows a sketch of part of the curve given parametrically by $$x = t - \tanh t \quad y = \operatorname { sech } t$$
    \includegraphics[max width=\textwidth, alt={}]{1891766e-7744-49ac-82b6-7e51cb63b381-3_424_625_863_703}
    The curve meets the \(y\)-axis at the point \(K\), and \(P ( x , y )\) is a general point on the curve. The arc length \(K P\) is denoted by \(s\). Show that:
    1. \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \tanh ^ { 2 } t\);
    2. \(s = \ln \cosh t\);
    3. \(y = \mathrm { e } ^ { - s }\).
  3. The arc \(K P\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the surface area generated is $$2 \pi \left( 1 - \mathrm { e } ^ { - S } \right)$$ (4 marks)
AQA FP2 2007 January Q5
5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Find the value of \(\left( \cos \frac { \pi } { 6 } + \mathrm { i } \sin \frac { \pi } { 6 } \right) ^ { 6 }\).
  3. Show that $$( \cos \theta + \mathrm { i } \sin \theta ) ( 1 + \cos \theta - \mathrm { i } \sin \theta ) = 1 + \cos \theta + \mathrm { i } \sin \theta$$
  4. Hence show that $$\left( 1 + \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) ^ { 6 } + \left( 1 + \cos \frac { \pi } { 6 } - i \sin \frac { \pi } { 6 } \right) ^ { 6 } = 0$$
AQA FP2 2007 January Q6
6
  1. Find the three roots of \(z ^ { 3 } = 1\), giving the non-real roots in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Given that \(\omega\) is one of the non-real roots of \(z ^ { 3 } = 1\), show that $$1 + \omega + \omega ^ { 2 } = 0$$
  3. By using the result in part (b), or otherwise, show that:
    1. \(\frac { \omega } { \omega + 1 } = - \frac { 1 } { \omega }\);
    2. \(\frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } = - \omega\);
    3. \(\left( \frac { \omega } { \omega + 1 } \right) ^ { k } + \left( \frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } \right) ^ { k } = ( - 1 ) ^ { k } 2 \cos \frac { 2 } { 3 } k \pi\), where \(k\) is an integer.
AQA FP2 2007 January Q7
7
  1. Use the identity \(\tan ( A - B ) = \frac { \tan A - \tan B } { 1 + \tan A \tan B }\) with \(A = ( r + 1 ) x\) and \(B = r x\) to show that $$\tan r x \tan ( r + 1 ) x = \frac { \tan ( r + 1 ) x } { \tan x } - \frac { \tan r x } { \tan x } - 1$$ (4 marks)
  2. Use the method of differences to show that $$\tan \frac { \pi } { 50 } \tan \frac { 2 \pi } { 50 } + \tan \frac { 2 \pi } { 50 } \tan \frac { 3 \pi } { 50 } + \ldots + \tan \frac { 19 \pi } { 50 } \tan \frac { 20 \pi } { 50 } = \frac { \tan \frac { 2 \pi } { 5 } } { \tan \frac { \pi } { 50 } } - 20$$
AQA FP2 2008 January Q1
1
  1. Express \(4 + 4 \mathrm { i }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  2. Solve the equation $$z ^ { 5 } = 4 + 4 i$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
AQA FP2 2008 January Q2
2
  1. Show that $$( 2 r + 1 ) ^ { 3 } - ( 2 r - 1 ) ^ { 3 } = 24 r ^ { 2 } + 2$$
  2. Hence, using the method of differences, show that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$
AQA FP2 2008 January Q3
3 A circle \(C\) and a half-line \(L\) have equations $$| z - 2 \sqrt { 3 } - \mathrm { i } | = 4$$ and $$\arg ( z + i ) = \frac { \pi } { 6 }$$ respectively.
  1. Show that:
    1. the circle \(C\) passes through the point where \(z = - \mathrm { i }\);
    2. the half-line \(L\) passes through the centre of \(C\).
  2. On one Argand diagram, sketch \(C\) and \(L\).
  3. Shade on your sketch the set of points satisfying both $$| z - 2 \sqrt { 3 } - \mathrm { i } | \leqslant 4$$ and $$0 \leqslant \arg ( z + i ) \leqslant \frac { \pi } { 6 }$$