Questions Further Paper 2 (287 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2020 June Q1
1 Find the solution of the differential equation $$\frac { d y } { d x } + 5 y = e ^ { - 7 x }$$ for which \(y = 0\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2020 June Q2
2 It is given that \(y = 2 ^ { x }\).
  1. By differentiating \(\ln y\) with respect to \(x\), show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = 2 ^ { \mathrm { x } } \ln 2\).
  2. Write down \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\).
  3. Hence find the first three terms in the Maclaurin's series for \(2 ^ { X }\).
CAIE Further Paper 2 2020 June Q3
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
CAIE Further Paper 2 2020 June Q5
5 The curves \(C _ { 1 } : y = \cosh x\) and \(C _ { 2 } : y = \sinh 2 x\) intersect at the point where \(x = a\).
  1. Find the exact value of \(a\), giving your answer in logarithmic form.
  2. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on the same diagram.
  3. Find the exact value of the length of the arc of \(C _ { 1 }\) from \(x = 0\) to \(\mathrm { x } = \mathrm { a }\).
CAIE Further Paper 2 2020 June Q6
6 The integral \(\mathrm { I } _ { \mathrm { n } }\), where \(n\) is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\).
  2. By considering \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \mathrm { x } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \right)\), or otherwise, show that $$\mathrm { nl } _ { \mathrm { n } + 2 } = 2 ^ { \mathrm { n } - 1 } 3 ^ { - \frac { 1 } { 2 } \mathrm { n } } + ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } } .$$
  3. Find the exact value of \(I _ { 5 }\) giving the answer in the form \(k \sqrt { 3 }\), where \(k\) is a rational number to be determined.
    \includegraphics[max width=\textwidth, alt={}, center]{20e14db3-0eb0-4954-91cf-027e16f8bf14-11_78_1576_336_321}
CAIE Further Paper 2 2020 June Q7
7 It is given that \(x = t ^ { 3 } y\) and $$t ^ { 3 } \frac { d ^ { 2 } y } { d t ^ { 2 } } + \left( 4 t ^ { 3 } + 6 t ^ { 2 } \right) \frac { d y } { d t } + \left( 13 t ^ { 3 } + 12 t ^ { 2 } + 6 t \right) y = 61 e ^ { \frac { 1 } { 2 } t }$$
  1. Show that $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 4 \frac { d x } { d t } + 13 x = 61 e ^ { \frac { 1 } { 2 } t }$$
  2. Find the general solution for \(y\) in terms of \(t\).
CAIE Further Paper 2 2020 June Q8
8
  1. Find the values of \(a\) for which the system of equations $$\begin{aligned} 3 x + y + z & = 0
    a x + 6 y - z & = 0
    a y - 2 z & = 0 \end{aligned}$$ does not have a unique solution.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & 1
    0 & 6 & - 1
    0 & 0 & - 2 \end{array} \right) .$$
  2. Use the characteristic equation of \(\mathbf { A }\) to find the inverse of \(\mathbf { A } ^ { 2 }\).
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2020 June Q3
3
  1. Find the roots of the equation \(z ^ { 3 } = - 1 - \mathrm { i }\), giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\).
    Let \(\mathbf { w } = \mathbf { z } _ { 1 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 2 } ^ { 3 \mathrm { k } } + \mathbf { z } _ { 3 } ^ { 3 \mathrm { k } }\), where \(k\) is a positive integer and \(\mathrm { z } _ { 1 } , \mathrm { z } _ { 2 } , \mathrm { z } _ { 3 }\) are the roots of \(\mathrm { z } ^ { 3 } = - 1 - \mathrm { i }\).
  2. Express \(w\) in the form \(R \mathrm { e } ^ { \mathrm { i } \alpha }\), where \(R > 0\), giving \(R\) and \(\alpha\) in terms of \(k\).
    \includegraphics[max width=\textwidth, alt={}, center]{1de67949-6262-4ade-b986-02b6563ae404-06_889_824_267_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
CAIE Further Paper 2 2020 June Q6
6 The integral \(\mathrm { I } _ { \mathrm { n } }\), where \(n\) is an integer, is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \mathrm { dx }\).
  1. Find the exact value of \(I _ { 1 }\).
  2. By considering \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \mathrm { x } \left( 1 - \mathrm { x } ^ { 2 } \right) ^ { - \frac { 1 } { 2 } \mathrm { n } } \right)\), or otherwise, show that $$\mathrm { nl } _ { \mathrm { n } + 2 } = 2 ^ { \mathrm { n } - 1 } 3 ^ { - \frac { 1 } { 2 } \mathrm { n } } + ( \mathrm { n } - 1 ) \mathrm { I } _ { \mathrm { n } } .$$
  3. Find the exact value of \(I _ { 5 }\) giving the answer in the form \(k \sqrt { 3 }\), where \(k\) is a rational number to be determined.
    \includegraphics[max width=\textwidth, alt={}, center]{1de67949-6262-4ade-b986-02b6563ae404-11_78_1576_336_321}
CAIE Further Paper 2 2020 June Q1
1 Find the general solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } - 8 \frac { d x } { d t } - 9 x = 9 e ^ { 8 t }$$
CAIE Further Paper 2 2020 June Q2
2 Let \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 1 } ( 1 + 3 \mathrm { x } ) ^ { \mathrm { n } } \mathrm { e } ^ { - 3 \mathrm { x } } \mathrm { dx }\), where \(n\) is an integer.
  1. Show that \(3 \mathrm { I } _ { \mathrm { n } } = 1 - 4 ^ { \mathrm { n } } \mathrm { e } ^ { - 3 } + 3 \mathrm { nl } _ { \mathrm { n } - 1 }\).
  2. Find the exact value of \(I _ { 2 }\).
CAIE Further Paper 2 2020 June Q3
3 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 1 & 7
0 & 6 & 0
7 & 7 & 5 \end{array} \right) .$$
  1. Find the eigenvalues of \(\mathbf { A }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-06_568_1614_294_262} The diagram shows the curve with equation \(\mathrm { y } = \ln \mathrm { x }\) for \(x \geqslant 1\), together with a set of ( \(N - 1\) ) rectangles of unit width.
  3. By considering the sum of the areas of these rectangles, show that $$\ln N ! > N \ln N - N + 1 .$$
  4. Use a similar method to find, in terms of \(N\), an upper bound for \(\operatorname { In } N\) !.
CAIE Further Paper 2 2020 June Q5
5 The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 1 } { 2 } \mathrm { t } ^ { 2 } - \ln \mathrm { t } , \quad \mathrm { y } = 2 \mathrm { t } + 1 , \quad \text { for } \frac { 1 } { 2 } \leqslant t \leqslant 2$$
  1. Find the exact length of \(C\).
  2. Find \(\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dx } ^ { 2 } }\) in terms of \(t\), simplifying your answer.
CAIE Further Paper 2 2020 June Q6
6
  1. Starting from the definitions of tanh and sech in terms of exponentials, prove that $$1 - \tanh ^ { 2 } \theta = \operatorname { sech } ^ { 2 } \theta$$ \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1552_374_347}
    \includegraphics[max width=\textwidth, alt={}]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_67_1569_466_328} ......................................................................................................................................... ........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1573_735_324}
    \includegraphics[max width=\textwidth, alt={}]{671d8d26-8c9b-40d5-bc59-97c3ccdcadf4-10_72_1573_826_324} .......................................................................................................................................... . ........................................................................................................................................ . The variables \(x\) and \(y\) are such that \(\tanh y = \cos \left( x + \frac { 1 } { 4 } \pi \right)\), for \(- \frac { 1 } { 4 } \pi < x < \frac { 3 } { 4 } \pi\).
  2. By differentiating the equation \(\tanh y = \cos \left( x + \frac { 1 } { 4 } \pi \right)\) with respect to \(x\), show that $$\frac { \mathrm { dy } } { \mathrm { dx } } = - \operatorname { cosec } \left( \mathrm { x } + \frac { 1 } { 4 } \pi \right)$$
  3. Hence find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \cos \left( x + \frac { 1 } { 4 } \pi \right) \right)\) in the form \(\frac { 1 } { 2 } \ln a + b x + c x ^ { 2 }\), giving the exact values of the constants \(a , b\) and \(c\).
CAIE Further Paper 2 2020 June Q7
7
  1. Show that an appropriate integrating factor for $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ is \(x + \sqrt { x ^ { 2 } + 1 }\).
  2. Hence find the solution of the differential equation $$\left( x ^ { 2 } + 1 \right) \frac { d y } { d x } + y \sqrt { x ^ { 2 } + 1 } = x ^ { 2 } - x \sqrt { x ^ { 2 } + 1 }$$ for which \(y = \ln 2\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2020 June Q8
8
  1. Use de Moivre's theorem to show that \(\sin ^ { 6 } \theta = - \frac { 1 } { 32 } ( \cos 6 \theta - 6 \cos 4 \theta + 15 \cos 2 \theta - 10 )\).
    It is given that \(\cos ^ { 6 } \theta = \frac { 1 } { 32 } ( \cos 6 \theta + 6 \cos 4 \theta + 15 \cos 2 \theta + 10 )\).
  2. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \left( \cos ^ { 6 } \left( \frac { 1 } { 4 } x \right) + \sin ^ { 6 } \left( \frac { 1 } { 4 } x \right) \right) \mathrm { d } x\).
  3. Express each root of the equation \(16 c ^ { 6 } + 16 \left( 1 - c ^ { 2 } \right) ^ { 3 } - 13 = 0\) in the form \(\cos k \pi\), where \(k\) is a rational number.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2021 June Q1
1
  1. Given that \(a\) is an integer, show that the system of equations $$\begin{aligned} a x + 3 y + z & = 14
    2 x + y + 3 z & = 0
    - x + 2 y - 5 z & = 17 \end{aligned}$$ has a unique solution and interpret this situation geometrically.
  2. Find the value of \(a\) for which \(x = 1 , y = 4 , z = - 2\) is the solution to the system of equations in part (a).
CAIE Further Paper 2 2021 June Q2
2 The variables \(x\) and \(y\) are related by the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 3 \frac { d y } { d x } + 2 y = 2 x + 1$$
  1. Find the general solution for \(y\) in terms of \(x\).
  2. State an approximate solution for large positive values of \(x\).
CAIE Further Paper 2 2021 June Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{fa2213b3-480c-44cb-8ba0-ebd2b94d3d90-04_851_805_251_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x < U _ { n }\), where $$\mathrm { U } _ { \mathrm { n } } = \left( \frac { \mathrm { n } + 1 } { 2 \mathrm { n } } \right) ^ { 2 }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x\).
  3. Find the least value of \(n\) such that \(\mathrm { U } _ { \mathrm { n } } - \mathrm { L } _ { \mathrm { n } } < 10 ^ { - 3 }\).
CAIE Further Paper 2 2021 June Q4
4 Find the solution of the differential equation $$\sin \theta \frac { d y } { d \theta } + y = \tan \frac { 1 } { 2 } \theta$$ where \(0 < \theta < \pi\), given that \(y = 1\) when \(\theta = \frac { 1 } { 2 } \pi\). Give your answer in the form \(y = \mathrm { f } ( \theta )\). [You may use without proof the result that \(\int \operatorname { cosec } \theta d \theta = \ln \tan \frac { 1 } { 2 } \theta\).]
CAIE Further Paper 2 2021 June Q5
5
  1. State the sum of the series \(z + z ^ { 2 } + z ^ { 3 } + \ldots + z ^ { n }\), for \(z \neq 1\).
  2. Given that \(z\) is an \(n\)th root of unity and \(z \neq 1\), deduce that \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 } = 0\).
  3. Given instead that \(z = \frac { 1 } { 3 } ( \cos \theta + \mathrm { i } \sin \theta )\), use de Moivre's theorem to show that $$\sum _ { m = 1 } ^ { \infty } 3 ^ { - m } \cos m \theta = \frac { 3 \cos \theta - 1 } { 10 - 6 \cos \theta }$$
CAIE Further Paper 2 2021 June Q6
6 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } 5 & - \frac { 22 } { 3 } & 8
0 & - 6 & 0
0 & 0 & 1 \end{array} \right)$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { 3 }\).
CAIE Further Paper 2 2021 June Q7
7
  1. It is given that \(\mathrm { y } = \operatorname { sech } ^ { - 1 } \left( \mathrm { x } + \frac { 1 } { 2 } \right)\).
    Express cosh \(y\) in terms of \(x\) and hence show that \(\sinh y \frac { d y } { d x } = - \frac { 1 } { \left( x + \frac { 1 } { 2 } \right) ^ { 2 } }\).
  2. Find the first three terms in the Maclaurin's series for \(\operatorname { sech } ^ { - 1 } \left( x + \frac { 1 } { 2 } \right)\) in the form $$\ln a + b x + c x ^ { 2 }$$ where \(a\), \(b\) and \(c\) are constants to be determined.
CAIE Further Paper 2 2021 June Q8
8 The curve \(C\) has parametric equations $$\mathbf { x } = 2 \cosh t , \quad \mathbf { y } = \frac { 3 } { 2 } \mathbf { t } - \frac { 1 } { 4 } \sinh 2 \mathbf { t } , \text { for } 0 \leqslant t \leqslant 1$$
  1. Find \(\frac { \mathrm { dx } } { \mathrm { dt } }\) and show that \(\frac { \mathrm { dy } } { \mathrm { dt } } = 1 - \sinh ^ { 2 } \mathrm { t }\).
    The area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
    1. Show that \(\mathrm { A } = \pi \int _ { 0 } ^ { 1 } \left( \frac { 3 } { 2 } \mathrm { t } - \frac { 1 } { 4 } \sinh 2 \mathrm { t } \right) ( 1 + \cosh 2 \mathrm { t } ) \mathrm { dt }\).
    2. Hence find \(A\) in terms of \(\pi , \sinh 2\) and \(\cosh 2\).
      If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2021 June Q3
3
\includegraphics[max width=\textwidth, alt={}, center]{fd247a71-4680-45d8-89d2-fef17ed3a5e9-04_851_805_251_616} The diagram shows the curve with equation \(\mathrm { y } = \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x < U _ { n }\), where $$\mathrm { U } _ { \mathrm { n } } = \left( \frac { \mathrm { n } + 1 } { 2 \mathrm { n } } \right) ^ { 2 }$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } x ^ { 3 } d x\).
  3. Find the least value of \(n\) such that \(\mathrm { U } _ { \mathrm { n } } - \mathrm { L } _ { \mathrm { n } } < 10 ^ { - 3 }\).