A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Proof by induction
Q4
AQA FP2 2006 January — Question 4
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2006
Session
January
Topic
Proof by induction
4
Prove by induction that $$2 + ( 3 \times 2 ) + \left( 4 \times 2 ^ { 2 } \right) + \ldots + ( n + 1 ) 2 ^ { n - 1 } = n 2 ^ { n }$$ for all integers \(n \geqslant 1\).
Show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) 2 ^ { r - 1 } = n 2 ^ { n } \left( 2 ^ { n + 1 } - 1 \right)$$
This paper
(7 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7