AQA FP2 2007 January — Question 7

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicAddition & Double Angle Formulae

7
  1. Use the identity \(\tan ( A - B ) = \frac { \tan A - \tan B } { 1 + \tan A \tan B }\) with \(A = ( r + 1 ) x\) and \(B = r x\) to show that $$\tan r x \tan ( r + 1 ) x = \frac { \tan ( r + 1 ) x } { \tan x } - \frac { \tan r x } { \tan x } - 1$$ (4 marks)
  2. Use the method of differences to show that $$\tan \frac { \pi } { 50 } \tan \frac { 2 \pi } { 50 } + \tan \frac { 2 \pi } { 50 } \tan \frac { 3 \pi } { 50 } + \ldots + \tan \frac { 19 \pi } { 50 } \tan \frac { 20 \pi } { 50 } = \frac { \tan \frac { 2 \pi } { 5 } } { \tan \frac { \pi } { 50 } } - 20$$