Questions Further AS Paper 2 Statistics (59 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA Further AS Paper 2 Statistics 2021 June Q1
1 The discrete random variable \(X\) has \(\operatorname { Var } ( X ) = 6.5\)
Find \(\operatorname { Var } ( 4 X - 2 )\) Circle your answer.
2426102104
AQA Further AS Paper 2 Statistics 2021 June Q2
1 marks
2 The random variable \(A\) has a Poisson distribution with mean 2 The random variable \(B\) has a Poisson distribution with standard deviation 4 The random variables \(A\) and \(B\) are independent.
State the distribution of \(A + B\) Circle your answer.
[0pt] [1 mark]
Po(4)
Po(6)
Po(8)
Po(18)
AQA Further AS Paper 2 Statistics 2021 June Q3
2 marks
3 The random variable \(X\) has a discrete uniform distribution and takes values \(1,2,3 , \ldots , n\) The mean of \(X\) is 8 3
  1. Show that \(n = 15\)
    [0pt] [2 marks]
    LL
    3
  2. \(\quad\) Find \(\mathrm { P } ( X > 4 )\)
    3
  3. Find the variance of \(X\), giving your answer in exact form.
AQA Further AS Paper 2 Statistics 2021 June Q4
4 The distance a particular football player runs in a match is modelled by a normal distribution with standard deviation 0.3 kilometres. A random sample of \(n\) matches is taken.
The distance the player runs in this sample of matches has mean 10.8 kilometres.
The sample is used to construct a \(93 \%\) confidence interval for the mean, of width 0.0543 kilometres, correct to four decimal places. 4
  1. Find the value of \(n\)
    4
  2. Find the \(93 \%\) confidence interval for the mean, giving the limits to three decimal places.
    4
  3. Alison claims that the population mean distance the player runs is 10.7 kilometres. She carries out a hypothesis test at the 7\% level of significance using the random sample and the hypotheses $$\begin{aligned} & \mathrm { H } _ { 0 } : \mu = 10.7
    & \mathrm { H } _ { 1 } : \mu \neq 10.7 \end{aligned}$$ 4
    1. State, with a reason, whether the null hypothesis will be accepted or rejected. 4
  4. (ii) Describe, in the context of the hypothesis test in part (c)(i), what is meant by a Type II error.
    \includegraphics[max width=\textwidth, alt={}, center]{9be40ed6-6df8-426a-8afd-fefc17287de6-06_2488_1730_219_141}
AQA Further AS Paper 2 Statistics 2021 June Q5
1 marks
5 In a game it is known that:
  • 25\% of players score 0
  • 30\% of players score 5
  • 35\% of players score 10
  • 10\% of players score 20
Players receive prize money, in pounds, equal to 100 times their score.
5
  1. State the modal score.
    [0pt] [1 mark] 5
  2. Find the median score.
    5
  3. Find the mean prize money received by a player.
AQA Further AS Paper 2 Statistics 2021 June Q6
11 marks
6 The continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} \frac { 1 } { 114 } ( 4 x + 7 ) & 0 \leq x \leq 6
0 & \text { otherwise } \end{cases}$$ 6
  1. Show that the median of \(X\) is 3.87, correct to three significant figures.
    [0pt] [3 marks]
    6
  2. Find the exact value of \(\mathrm { P } ( X > 2 )\)
    6
  3. The continuous random variable \(Y\) has probability density function \(g ( y ) = \begin{cases} \frac { 1 } { 2 } y ^ { 2 } - \frac { 1 } { 6 } y ^ { 3 }1 \leq y \leq 3
    0\text { otherwise } \end{cases}\)
    "
    6
    1. Show that \(\operatorname { Var } \left( \frac { 1 } { Y } \right) = \frac { 2 } { 81 }\)
  4. \multirow[b]{2}{*}{
    [4 marks]
    [4 marks]
    }
AQA Further AS Paper 2 Statistics 2021 June Q7
7 Two employees, \(A\) and \(B\), both produce the same toy for a company. The company records the total number of errors made per day by each employee during a 40-day period. The results are summarised in the following table. Employee
Number of errors made per day
0123 or moreTotal
\(A\)81020240
B18415340
Total261435580
The company claims that there is an association between employee and number of errors made per day. 7
  1. Test the company's claim, using the \(5 \%\) level of significance.
    7
  2. By considering observed and expected frequencies, interpret in context the association between employee and number of errors made per day.
    \includegraphics[max width=\textwidth, alt={}, center]{9be40ed6-6df8-426a-8afd-fefc17287de6-12_2492_1723_217_150}
    \includegraphics[max width=\textwidth, alt={}]{9be40ed6-6df8-426a-8afd-fefc17287de6-16_2496_1721_214_148}
AQA Further AS Paper 2 Statistics Specimen Q1
1 marks
1 The random variable \(T\) has probability density defined by $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } \frac { t } { 8 } & 0 \leq t \leq k
0 & \text { otherwise } \end{array} \right.$$ Find the value of \(k\)
[0pt] [1 mark] $$\begin{array} { l l l l } \frac { 1 } { 16 } & \frac { 1 } { 4 } & 4 & 16 \end{array}$$
AQA Further AS Paper 2 Statistics Specimen Q2
2 The discrete random variable \(X\) has probability distribution defined by $$\mathrm { P } ( X = x ) = \begin{cases} 0.1 & x = 0,1,2,3,4,5,6,7,8,9
0 & \text { otherwise } \end{cases}$$ Find the value of \(\mathrm { P } ( 4 \leq X \leq 7 )\)
Circle your answer.
0.20.30.40.5
AQA Further AS Paper 2 Statistics Specimen Q3
4 marks
3 The discrete random variable \(R\) has the following probability distribution.
\(\boldsymbol { r }\)- 20\(a\)4
\(\mathbf { P } ( \boldsymbol { R } = \boldsymbol { r } )\)0.3\(b\)\(c\)0.1
It is known that \(\mathrm { E } ( R ) = 0.2\) and \(\operatorname { Var } ( R ) = 3.56\)
Find the values of \(a , b\) and \(c\).
[0pt] [4 marks]
AQA Further AS Paper 2 Statistics Specimen Q4
3 marks
4 The number of printers, \(V\), bought during one day from the Verigood store can be modelled by a Poisson distribution with mean 4.5 The number of printers, \(W\), bought during one day from the Winnerprint store can be modelled by a Poisson distribution with mean 5.5 4
  1. Find the probability that the total number of printers bought during one day from Verigood and Winnerprint stores is greater than 10.
    [0pt] [2 marks] 4
  2. State the circumstance under which the distributional model you used in part (a) would not be valid.
    [0pt] [1 mark]
AQA Further AS Paper 2 Statistics Specimen Q5
5 Participants in a school jumping competition gain a total score for each jump based on the length, \(L\) metres, jumped beyond a fixed point and a mark, \(S\), for style.
\(L\) may be regarded as a continuous random variable with probability density function $$\mathrm { f } ( l ) = \left\{ \begin{array} { c c } w l & 0 \leq l \leq 15
0 & \text { otherwise } \end{array} \right.$$ where \(w\) is a constant.
\(S\) may be regarded as a discrete random variable with probability function $$\mathrm { P } ( S = s ) = \left\{ \begin{array} { c l } \frac { 1 } { 15 } s & s = 1,2,3,4,5
0 & \text { otherwise } \end{array} \right.$$ Assume that \(L\) and \(S\) are independent. The total score for a participant in this competition, \(T\), is given by \(T = L ^ { 2 } + \frac { 1 } { 2 } S\) Show that the expected total score for a participant is \(114 \frac { 1 } { 3 }\)
AQA Further AS Paper 2 Statistics Specimen Q6
5 marks
6 The continuous random variable \(T\) has probability density function defined by $$\mathrm { f } ( t ) = \left\{ \begin{array} { c c } \frac { 1 } { 3 } & 0 \leq t \leq \frac { 3 } { 2 }
\frac { 9 - 2 t } { 18 } & \frac { 3 } { 2 } \leq t \leq \frac { 9 } { 2 }
0 & \text { otherwise } \end{array} \right.$$ 6
    1. Sketch this probability density function below.
      \includegraphics[max width=\textwidth, alt={}, center]{6ccf7d1d-5a7b-47d1-b38e-c7e762204746-07_1009_1041_1073_520} 6
  1. (ii) State the median of \(T\). 6
    1. Find \(\mathrm { E } ( T )\)
      [0pt] [2 marks]
      6
  2. (ii) Given that \(\mathrm { E } \left( T ^ { 2 } \right) = \frac { 15 } { 4 }\), find \(\operatorname { Var } ( 4 T - 5 )\) [3 marks]
AQA Further AS Paper 2 Statistics Specimen Q7
7 A dairy industry researcher, Robyn, decided to investigate the milk yield, classified as low, medium or high, obtained from four different breeds of cow, \(\mathrm { A } , \mathrm { B } , \mathrm { C }\) and D . The milk yield of a sample of 105 cows was monitored and the results are summarised in contingency Table 1.
\multirow{2}{*}{Table 1}Yield
LowMediumHighTotal
\multirow{4}{*}{Breed}A451221
B106420
C817732
D520732
Total274830105
The sample of cows may be regarded as random.
Robyn decides to carry out a \(\chi ^ { 2 }\)-test for association between milk yield and breed using the information given in Table 1. 7
  1. Contingency Table 2 gives some of the expected frequencies for this test.
    Complete Table 2 with the missing expected values.
    \multirow[t]{2}{*}{Table 2}Yield
    LowMediumHigh
    \multirow{4}{*}{Breed}A6
    B5.149.145.71
    C
    D8.2314.639.14
    7
    1. For Robyn's test, the test statistic \(\sum \frac { ( O - E ) ^ { 2 } } { E } = 19.4\) correct to three significant figures.
      Use this information to carry out Robyn's test, using the \(1 \%\) level of significance.
      7
  2. (ii) By considering the observed frequencies given in Table 1 with the expected frequencies in Table 2, interpret, in context, the association, if any, between milk yield and breed.
AQA Further AS Paper 2 Statistics Specimen Q8
9 marks
8 In a small town, the number of properties sold during a week in spring by a local estate agent, Keith, can be regarded as occurring independently and with constant mean \(\mu\). Data from several years have shown the value of \(\mu\) to be 3.5 . A new housing development was built on the outskirts of the town and the properties on this development were offered for sale by the builder of the development, not by the local estate agents. During the first four weeks in spring, when properties on the new development were offered for sale by the builder, Keith sold a total of 8 properties. Keith claims that the sale of new properties by the builder reduced his mean number of properties sold during a week in spring. 8
  1. Investigate Keith's claim, using the \(5 \%\) level of significance.
    [0pt] [6 marks]
    8
  2. For your test carried out in part (a) state, in context, the meaning of a Type II error.
    [0pt] [1 mark]
    8
  3. State one advantage and one disadvantage of using a 1\% significance level rather than a 5\% level of significance in a hypothesis test.
    [0pt] [2 marks]
AQA Further AS Paper 2 Statistics 2018 June Q1
1 Let \(X\) be a continuous random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 3 } { 4 } x ( 2 - x ) & 0 \leq x \leq 2
0 & \text { otherwise } \end{cases}$$ Find \(\mathrm { P } ( X = 1 )\)
Circle your answer.
0
\(\frac { 1 } { 2 }\)
\(\frac { 3 } { 4 }\)
\(\frac { 27 } { 32 }\)
AQA Further AS Paper 2 Statistics 2018 June Q2
2 The discrete random variable \(Y\) has a Poisson distribution with mean 3 Find the value of \(\mathrm { P } ( Y > 1 )\) to three significant figures.
Circle your answer.
\(0.149 \quad 0.199 \quad 0.801 \quad 0.950\)
AQA Further AS Paper 2 Statistics 2018 June Q3
3 The discrete random variable \(X\) has the following probability distribution
\(\boldsymbol { x }\)1249
\(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\)0.20.40.350.05
The continuous random variable \(Y\) has the following probability density function $$\mathrm { f } ( y ) = \begin{cases} \frac { 1 } { 64 } y ^ { 3 } & 0 \leq y \leq 4
0 & \text { otherwise } \end{cases}$$ Given that \(X\) and \(Y\) are independent, show that \(\mathrm { E } \left( X ^ { 2 } + Y ^ { 2 } \right) = \frac { 1327 } { 60 }\)
AQA Further AS Paper 2 Statistics 2018 June Q4
4 The waiting times for patients to see a doctor in a hospital can be modelled with a normal distribution with known variance of 10 minutes. 4
  1. A random sample of 100 patients has a total waiting time of 3540 minutes.
    Calculate a \(98 \%\) confidence interval for the population mean of waiting times, giving values to four significant figures.
    4
  2. Dante conducts a hypothesis test with the sample from part (a) on the waiting times. Dante's hypotheses are $$\begin{aligned} & \mathrm { H } _ { 0 } : \mu = 38
    & \mathrm { H } _ { 1 } : \mu \neq 38 \end{aligned}$$ Dante uses a \(2 \%\) level of significance.
    Explain whether Dante accepts or rejects the null hypothesis.
AQA Further AS Paper 2 Statistics 2018 June Q5
5 The diagram shows a graph of the probability density function of the random variable \(X\).
\includegraphics[max width=\textwidth, alt={}, center]{313cd5ce-07ff-4781-a134-565b8b221145-05_574_1086_406_479} 5
  1. State the mode of \(X\).
    5
  2. Find the probability density function of \(X\).
AQA Further AS Paper 2 Statistics 2018 June Q6
6 The discrete random variable \(Y\) has the probability function $$\mathrm { P } ( Y = y ) = \begin{cases} 2 k y & y = 1,2,3,4
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant. Show that \(\operatorname { Var } ( 5 Y - 2 ) = 25\)
\includegraphics[max width=\textwidth, alt={}, center]{313cd5ce-07ff-4781-a134-565b8b221145-07_2488_1716_219_153}
AQA Further AS Paper 2 Statistics 2018 June Q7
7 Over a period of time it has been shown that the mean number of vehicles passing a service station on a motorway is 50 per minute. After a new motorway junction was built nearby, Xander observed that 30 vehicles passed the service station in one minute. 7
  1. Xander claims that the construction of the new motorway junction has reduced the mean number of vehicles passing the service station per minute. Investigate Xander's claim, using a suitable test at the \(1 \%\) level of significance.
    7
  2. For your test carried out in part (a) state, in context, the meaning of a Type 1 error. 7
  3. Explain why the model used in part (a) might be invalid.
AQA Further AS Paper 2 Statistics 2018 June Q8
8 An insurance company groups its vehicle insurance policies into two categories, car insurance and motorbike insurance. The number of claims in a random sample of 80 policies was monitored and the results summarised in contingency Table 1. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Table 1}
\multirow{2}{*}{}Number of claims
0123 or moreTotal
\multirow[b]{3}{*}{Type of insurance policy}Car91011535
Motorbike19138545
Total2823191080
\end{table} The insurance company decides to carry out a \(\chi ^ { 2 }\)-test for association between number of claims and type of insurance policy using the information given in Table 1. 8
  1. The contingency table shown in Table 2 gives some of the exact expected frequencies for this test. Complete Table 2 with the missing exact expected values. \begin{table}[h]
    \captionsetup{labelformat=empty} \caption{Table 2}
    \multirow{2}{*}{}Number of claims
    0123 or more
    \multirow{2}{*}{Type of insurance policy}Car10.06254.375
    Motorbike10.6875
    \end{table} 8
  2. Carry out the insurance company's test, using the \(10 \%\) level of significance.
    \includegraphics[max width=\textwidth, alt={}, center]{313cd5ce-07ff-4781-a134-565b8b221145-12_2488_1719_219_150} Additional page, if required.
    Write the question numbers in the left-hand margin. Additional page, if required.
    Write the question numbers in the left-hand margin. Additional page, if required.
    Write the question numbers in the left-hand margin.
AQA Further AS Paper 2 Statistics 2019 June Q1
1 The discrete random variable \(X\) has the following probability distribution function $$\mathrm { P } ( X = x ) = \begin{cases} \frac { 5 - x } { 10 } & x = 1,2,3,4
0 & \text { otherwise } \end{cases}$$ Find \(\mathrm { P } ( X \geq 3 )\)
Circle your answer.
0.1
0.15
0.2
0.3
AQA Further AS Paper 2 Statistics 2019 June Q2
1 marks
2 A binomial hypothesis test was carried out at the \(5 \%\) level of significance with the hypotheses $$\begin{aligned} & \mathrm { H } _ { 0 } : p = 0.6
& \mathrm { H } _ { 1 } : p > 0.6 \end{aligned}$$ A sample of size 30 was used to carry out the test.
Find the probability that a Type I error was made.
Circle your answer.
[0pt] [1 mark]
\(4.4 \%\) 4.8\% 5.0\% 9.4\%