AQA FP2 2007 January — Question 5

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicComplex numbers 2

5
  1. Prove by induction that, if \(n\) is a positive integer, $$( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta$$
  2. Find the value of \(\left( \cos \frac { \pi } { 6 } + \mathrm { i } \sin \frac { \pi } { 6 } \right) ^ { 6 }\).
  3. Show that $$( \cos \theta + \mathrm { i } \sin \theta ) ( 1 + \cos \theta - \mathrm { i } \sin \theta ) = 1 + \cos \theta + \mathrm { i } \sin \theta$$
  4. Hence show that $$\left( 1 + \cos \frac { \pi } { 6 } + i \sin \frac { \pi } { 6 } \right) ^ { 6 } + \left( 1 + \cos \frac { \pi } { 6 } - i \sin \frac { \pi } { 6 } \right) ^ { 6 } = 0$$