Questions FP2 (1157 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP2 2014 June Q1
1 Tmall mt ad a ual ad ad a ma ad ctly Ty a mg a tagt \(l\) tam dc \(\quad t\) a mt tal tabl \(T d\) ad td - clld dctly \(t\) T cct ttut
bt t -
  1. tat t d at t cll $$\begin{array} { c c } \pi & \theta
    \hline \pi & \theta \end{array}$$
  2. G tat \(t\) magtud \(t\) mul xcd by dug \(t\) cll - \(d t\) alu
CAIE FP2 2014 June Q2
2 Aatcl ma kgmaacaccltct adadu mt At tm tatcl at tt At tm cd agl tat tadal cmt \(t\) acclat at tm cd a magtud \(\quad \pi \quad \theta m\) Fd
  1. talu ta cmt t acclat t ual t
  2. \(t\) magtud \(t\) ultat \(c\) actg
CAIE FP2 2014 June Q3
3 A atcl attacd \(t d\) a lgt xtbl tg lgt \(\quad T t d\) t tg attacd t a xd t t atcl agg ulbum t \(t\) tg tcal \(t\) ga tal mul magtud t tg mak a agl t t dad tcal at \(\quad\) t \(t\)
  1. tat - \(\pi \quad c \quad \theta\)
  2. It g tat \(\quad { } _ { \pi } ^ { \alpha } \quad \theta \quad\) a t ctat Jut \(\quad\) yg yu a dcb tmt ac tllg ca
    (a)
    (b)
CAIE FP2 2014 June Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{e2ff0097-b2a1-4901-b880-4ef4505c9cbe-3_529_606_260_767}
A um dad lgtT d t ulbum a mt g\(t\)
\(t d \quad\) tg \(a u g t\)al la \(T\) dtacad tagl btad
t tal- A atcl ma- attacd t t d atdagam
Fd t mal act atad dduc tat-
\(T\) cct ct bt td ad t latat
CAIE FP2 2014 June Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{e2ff0097-b2a1-4901-b880-4ef4505c9cbe-3_543_704_1338_708}
A um ctagula lama\(c\)ada maA um
ccula lama adu - a ma-T t lama a xd tgt t am la
t t ct ccdg at t tdagam A atclma -- attacd at
T ytm t tat abut a xd mt tal ax tugad dcula \(t\) t
la\(t\) ytm abut \(t\) ax\(\_\_\_\_\)
\(\mu \geqslant \leqslant\)
T ytm lad m \(t t\)tal ad\(b l\)Fd \(t m\)\(- t\)
gatt agula d tubut mt gg t alucct \(t\) dcmal lac
CAIE FP2 2014 June Q6
6 Emly at a atcula cmay a \(b\) ty \(t\) duc abc \(t\) cmay dcd \(t t\)
\(t u\) ac day at ay tm bt am ad m F a adm aml mly
\(t u m b u a b c t y a b\)
a \(g\) t llg tabl
\(k g u a c\) daym am \(t m T\)
duc xtm ad all mly \(t k\)
ad \(t\) ya at \(t\) tduct xtm
Emly
\(B\)
\(A t\)
a ad aml tt t tt at t gcac ll t t ulat ma umb
\(u\) abc a dcad ll g t tduct xtm
CAIE FP2 2014 June Q7
7 Jam t a dcu atdly
a attmt \(t\) ac a uccul \(t A t\) cutd a
uccul \(t\) dtac acd mt \(F\) ac \(t\) t bablty tat Jam
uccul - ddtly all \(t\) t Fd t bablty tat Jam tak
  1. xactly \(t\) tact \(t\) uccul \(t\)
  2. \(m\) ta \(t\) tac \(t\) tuccul \(t\) I \(d t\) ualy a cmtt a dcut mut \(t\) mt \(t\) at mt \(x\)
    attmt a uccul \(t\) acd ut \(t\) a tak Fd t bablty tat
    Jam ual t cmtt Cl at dcut Fact \(\quad t\) bablty tat ll ac a \(t\)
    mt - ddtly all t t Fd t bablty tat xactly Jam ad
    Cl ual t cmtt
CAIE FP2 2014 June Q8
8 A adm aml tak \(m\) t adult ul d ty ca Tult a
at a tad clad by aggu ad
\(g\) t llg tabl
HatcbackEtatCtbl
d ya
Bt ad ya
O ya
Tt at t gcac ll \(t\)
d ty ca d
dt aggu
CAIE FP2 2014 June Q9
9 T ctuu adm aabl
a dtbut uct \(F g\) by
Z
\(F \pi \theta\) Fd talu
c \(P\)
\(\pi\)
\(\theta\) T adm aabl dd by \(l \quad\) Fd t dtbut uct
Fd t bablty dty uct
ad ktc t ga Aumg tat lgt a mally dtbutd
  1. tt at \(t\) gcac ll \(t\) t ulat ma lgt \(t c\) gat ta cm
  2. calculat a cdc tal \(t\) ulat ma lgt \(t c\) EITHE
    A atclgt latc tg atual lgt\multirow{4}{*}{}
    T atcl\(t\) ad ac \(t\) gatt \(g t\)\multirow{4}{*}{}
    t lgt t tg
    (i) tat \(t\) mdulu latcty \(t\) tg-
    (ii) tat \(m m l\) amc mt abut \(t\) ulbum \(t\) ad tat \(t\) d t mt
    (iii)\(t\) ual t al t maxmum alu
    O
    \(F\) a adm aml \(b\) ad t uat \(t g l\)at a aluθt uat \(t g l\)
    ad
    ctly amla ctat \(T\) duct mmt \(c\)lat cct \(t\)
    (i) Tt at \(t\) gcac ll \(t\) t dc \(t\) clat bt \(t\) aabl
    (ii)d talu
    (iii)alu taml data d t aluad ktc \(t\)
    \(F\) ac \(t\) a alu\(\pi\)cdd
    (iv)t uat \(\operatorname { tg } l\)utyg yu aad d talu \(t\)
    B A PAGE B A PAGE B A PAGE
CAIE FP2 2013 November Q8
8 Te ananye neet mnent tenm e unt \(n\) en \(y\) $$\left\{ { } ^ { t } \right. \text { tyen ty }$$ te e
ee \(n \quad e\) tentnt
i \(t t\)
\(t\) nnttu nmy en mnent e tnte tye \(\{\) \(\underset { n m m } { n m m e } \quad e \quad t n \quad\) e \(\quad \lambda \quad\) teeut \(n\) teee n ne \section*{n} \(e\) et ey
i nte ve te utmant \(e \quad t n e\) ent te me
ii Tet tie n neee tete \(e\) ene n ne et n eten te e
iii \(n\) tenan \(u\) te me
iv tmeteu en mantee ty yune
CAIE FP2 2013 November Q10
10 Cutna ee \(e\) ee \(n\) ee \(n\) tey ee \(n m m e\) me ut na \(n\) ene ut na tenume ee \(n e \quad n \quad e \quad n \quad n t e n t e\)
\(e\)
ene
Tet tite neee atee eateden eeene me \(n\) eme ut na
\(A \quad e n m m e \quad n t e n t n t\) ee tentee \(t\) unttte t enteme me nteet w \(n\) neee y te tet
me ut naeme ut na
\(t\)\(n\)\(n\)\(e\)\(n\)e ent
\(t\)\(t\)\(u\)\(e\)\(t\)eent n u n te
\(11 y \quad\) one \(g a a\) \begin{table}[h]
\captionsetup{labelformat=empty} \caption{TH}
\(m\)a ax атаа\(\sqrt { - } { } ^ { a }\)\multirow[b]{3}{*}{(}
ma aym \(g\)та а agа а а \(y\)
\(a\)\(a\)-
\multirow{3}{*}{\(a\)}\multirow{3}{*}{
\(
}}
\multirow[t]{3}{*}{
\)a\(
\)\sqrt { }\(
}
y \)a \quad a\(
\)- \quad a g\(
\)m$
\end{table} \begin{verbatim} ay \(g\) a maag a ma \end{verbatim}
\includegraphics[max width=\textwidth, alt={}]{bd7c631e-eb5a-42c7-9d17-d9ed16f616d8-5_40_17_1009_239}
\begin{verbatim} , та та аа а тта а ) а тата ута a \end{verbatim} LNE LAN PAGE
Edexcel FP2 Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a7ef3811-3594-4ecd-a616-36f42d26489b-06_428_803_233_577} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with polar equation $$r = a + 3 \cos \theta , \quad a > 0 , \quad 0 \leqslant \theta < 2 \pi$$ The area enclosed by the curve is \(\frac { 107 } { 2 } \pi\).
Find the value of \(a\).
Edexcel FP2 2006 January Q1
Find the set of values of \(x\) for which \(\frac { x ^ { 2 } } { x - 2 } > 2 x\).
(Total 6 marks)
Edexcel FP2 2006 January Q3
3. (a) Show that the substitution \(y = v x\) transforms the differential equation $$\frac { d y } { d x } = \frac { 3 x - 4 y } { 4 x + 3 y }$$ into the differential equation $$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = - \frac { 3 v ^ { 2 } + 8 v - 3 } { 3 v + 4 }$$ (b) By solving differential equation (II), find a general solution of differential equation (I). (5)
(c) Given that \(y = 7\) at \(x = 1\), show that the particular solution of differential equation (I) can be written as $$( 3 y - x ) ( y + 3 x ) = 200$$ (5)(Total 14 marks)
Edexcel FP2 2006 January Q4
4. A curve \(C\) has polar equation \(r ^ { 2 } = a ^ { 2 } \cos 2 \theta , 0 \leq \theta \leq \frac { \pi } { 4 }\). The line \(l\) is parallel to the initial line, and \(l\) is the tangent to \(C\) at
above. above.
    1. Show that, for any point on \(C , r ^ { 2 } \sin ^ { 2 } \theta\) can be expressed in terms of \(\sin \theta\) and \(a\) only. (1)
    2. Hence, using differentiation, show that the polar coordinates of \(P\) are \(\left( \frac { a } { \sqrt { 2 } } , \frac { \pi } { 6 } \right)\).(6)
      \includegraphics[max width=\textwidth, alt={}, center]{2352f367-ddf9-4770-ace5-b561b0fbabbb-1_298_725_2163_1169} The shaded region \(R\), shown in the figure above, is bounded by \(C\), the line \(l\) and the half-line with equation
      \(\theta = \frac { \pi } { 2 }\).
  1. Show that the area of \(R\) is \(\frac { a ^ { 2 } } { 16 } ( 3 \sqrt { 3 } - 4 )\).
Edexcel FP2 2006 January Q5
5. Solve the equation \(z ^ { 5 } = \mathrm { i }\)
giving your answers in the form \(\cos \theta + \mathrm { i } \sin \theta\).
(Total 5 marks)
Edexcel FP2 2006 January Q7
7. $$( 1 + 2 x ) \frac { \mathrm { d } y } { \mathrm {~d} x } = x + 4 y ^ { 2 }$$
  1. Show that $$( 1 + 2 x ) \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 1 + 2 ( 4 y - 1 ) \frac { \mathrm { d } y } { \mathrm {~d} x }$$
  2. Differentiate equation 1 with respect to \(x\) to obtain an equation involving $$\frac { \mathrm { d } ^ { 3 } } { \mathrm {~d} x ^ { 3 } } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } , \frac { \mathrm {~d} y } { \mathrm {~d} x } , \quad x \text { and } y .$$ Given that \(y = \frac { 1 } { 2 }\) at \(x = 0\),
  3. find a series solution for \(y\), in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\).
    (6)(Total 11 marks)
Edexcel FP2 2006 January Q8
8. In the Argand diagram the point \(P\) represents the complex number \(z\). Given that arg \(\left( \frac { z - 2 \mathrm { i } } { z + 2 } \right) = \frac { \pi } { 2 }\),
  1. sketch the locus of \(P\),
  2. deduce the value of \(| \mathrm { z } + 1 - \mathrm { i } |\). The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is defined by $$w = \frac { 2 ( 1 + \mathrm { i } ) } { z + 2 } , \quad z \neq - 2$$
  3. Show that the locus of \(P\) in the \(z\)-plane is mapped to part of a straight line in the \(w\)-plane, and show this in an Argand diagram.
    (6)(Total 12 marks)
Edexcel FP2 2002 June Q1
  1. Find the set of values for which
$$| x - 1 | > 6 x - 1$$
Edexcel FP2 2002 June Q2
  1. Find the general solution of the differential equation \(t \frac { \mathrm {~d} v } { \mathrm {~d} t } - v = t , t > 0\) and hence show that the solution can be written in the form \(v = t ( \ln t + c )\), where \(c\) is an arbitrary cnst.
  2. This differential equation is used to model the motion of a particle which has speed \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at time \(t \mathrm {~s}\). When \(t = 2\) the speed of the particle is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find, to 3 sf , the speed of the particle when \(t = 4\).
Edexcel FP2 2002 June Q4
4. The curve \(C\) has polar equation \(r = 3 a \cos \theta , - \frac { \pi } { 2 } \leq \frac { \pi } { 2 }\). The curve \(D\) has polar equation \(r = a ( 1 + \cos \theta ) , - \pi \leq \theta < \pi\). Given that \(a\) is a positive constant, (a) sketch, on the same diagram, the graphs of \(C\) and \(D\), indicating where each curve cuts the initial line. The graphs of \(C\) intersect at the pole \(O\) and at the points \(P\) and \(Q\).
(b) Find the polar coordinates of \(P\) and \(Q\).
(c) Use integration to find the exact area enclosed by the curve \(D\) and the lines \(\theta = 0\) and \(\theta = \frac { \pi } { 3 }\) The region \(R\) contains all points which lie outside \(D\) and inside \(C\).
Given that the value of the smaller area enclosed by the curve \(C\) and the line \(\theta = \frac { \pi } { 3 }\) is $$\frac { 3 a ^ { 2 } } { 16 } ( 2 \pi - 3 \sqrt { } 3 )$$ (d) show that the area of \(R\) is \(\pi a ^ { 2 }\).
Edexcel FP2 2002 June Q5
5. Using algebra, find the set of values of \(x\) for which \(2 x - 5 > \frac { 3 } { x }\).
Edexcel FP2 2002 June Q6
6. (a) Find the general solution of the differential equation $$\cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + ( \sin x ) y = \cos ^ { 3 } x$$ (b) Show that, for \(0 \leq x \leq 2 \pi\), there are two points on the \(x\)-axis through which all the solution curves for this differential equation pass.
(c) Sketch the graph, for \(0 \leq x \leq 2 \pi\), of the particular solution for which \(y = 0\) at \(x = 0\).
Edexcel FP2 2002 June Q7
7. (a) Find the general solution of the differential equation $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + 7 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 3 y = 3 t ^ { 2 } + 11 t$$ (b) Find the particular solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(t = 0\).
(c) For this particular solution, calculate the value of \(y\) when \(t = 1\).
Edexcel FP2 2002 June Q8
8. \section*{Figure 1} The curve \(C\) shown in Fig. 1 has polar equation $$r = a ( 3 + \sqrt { 5 } \cos \theta ) , \quad - \pi \leq \theta < \pi .$$ \includegraphics[max width=\textwidth, alt={}, center]{6d92bf8a-df0d-421c-8246-8160f5921ee6-2_460_792_1503_970}
  1. Find the polar coordinates of the points \(P\) and \(Q\) where the tangents to \(C\) are parallel to the initial line. (6) The curve \(C\) represents the perimeter of the surface of a swimming pool. The direct distance from \(P\) to \(Q\) is 20 m.
  2. Calculate the value of \(a\).
  3. Find the area of the surface of the pool. (6)