Questions C34 (197 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel C34 2014 January Q1
1. $$\mathrm { f } ( x ) = \frac { 2 x } { x ^ { 2 } + 3 } , \quad x \in \mathbb { R }$$ Find the set of values of \(x\) for which \(\mathrm { f } ^ { \prime } ( x ) > 0\) You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C34 2014 January Q2
2. Solve, for \(0 \leqslant x \leqslant 270 ^ { \circ }\), the equation $$\frac { \tan 2 x + \tan 50 ^ { \circ } } { 1 - \tan 2 x \tan 50 ^ { \circ } } = 2$$ Give your answers in degrees to 2 decimal places.
(6)
\includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-05_104_95_2613_1786}
Edexcel C34 2014 January Q3
3. Given that $$4 x ^ { 3 } + 2 x ^ { 2 } + 17 x + 8 \equiv ( A x + B ) \left( x ^ { 2 } + 4 \right) + C x + D$$
  1. find the values of the constants \(A , B , C\) and \(D\).
  2. Hence find $$\int _ { 1 } ^ { 4 } \frac { 4 x ^ { 3 } + 2 x ^ { 2 } + 17 x + 8 } { x ^ { 2 } + 4 } d x$$ giving your answer in the form \(p + \ln q\), where \(p\) and \(q\) are integers.
Edexcel C34 2014 January Q4
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-10_606_613_285_278} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-10_602_608_287_1062} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 1 shows a sketch of part of the graph \(y = \mathrm { f } ( x )\), where $$f ( x ) = 2 | 3 - x | + 5 , \quad x \geqslant 0$$ Figure 2 shows a sketch of part of the graph \(y = \mathrm { g } ( x )\), where $$\operatorname { g } ( x ) = \frac { x + 9 } { 2 x + 3 } , \quad x \geqslant 0$$
  1. Find the value of \(\mathrm { fg } ( 1 )\)
  2. State the range of g
  3. Find \(\mathrm { g } ^ { - 1 } ( x )\) and state its domain. Given that the equation \(\mathrm { f } ( x ) = k\), where \(k\) is a constant, has exactly two roots,
  4. state the range of possible values of \(k\).
Edexcel C34 2014 January Q5
  1. (a) Prove, by using logarithms, that
$$\frac { \mathrm { d } } { \mathrm {~d} x } \left( 2 ^ { x } \right) = 2 ^ { x } \ln 2$$ The curve \(C\) has the equation $$2 x + 3 y ^ { 2 } + 3 x ^ { 2 } y + 12 = 4 \times 2 ^ { x }$$ The point \(P\), with coordinates \(( 2,0 )\), lies on \(C\).
(b) Find an equation of the tangent to \(C\) at \(P\).
Edexcel C34 2014 January Q6
6. Given that the binomial expansion, in ascending powers of \(x\), of $$\frac { 6 } { \sqrt { } \left( 9 + A x ^ { 2 } \right) } , \quad | x | < \frac { 3 } { \sqrt { } | A | }$$ is \(\quad B - \frac { 2 } { 3 } x ^ { 2 } + C x ^ { 4 } + \ldots\)
  1. find the values of the constants \(A , B\) and \(C\).
  2. Hence find the coefficient of \(x ^ { 6 }\)
Edexcel C34 2014 January Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-20_689_712_248_680} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = 2 x ( 1 + x ) \ln x , \quad x > 0$$ The curve has a minimum turning point at \(A\).
  1. Find f'(x)
  2. Hence show that the \(x\) coordinate of \(A\) is the solution of the equation $$x = \mathrm { e } ^ { - \frac { 1 + x } { 1 + 2 x } }$$
  3. Use the iteration formula $$x _ { n + 1 } = \mathrm { e } ^ { - \frac { 1 + x _ { n } } { 1 + 2 x _ { n } } } , \quad x _ { 0 } = 0.46$$ to find the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\) to 4 decimal places.
  4. Use your answer to part (c) to estimate the coordinates of \(A\) to 2 decimal places.
Edexcel C34 2014 January Q8
8. (a) Prove that $$\text { 2cosec } 2 A - \cot A \equiv \tan A , \quad A \neq \frac { n \pi } { 2 } , n \in \mathbb { Z }$$ (b) Hence solve, for \(0 \leqslant \theta \leqslant \frac { \pi } { 2 }\)
  1. \(2 \operatorname { cosec } 4 \theta - \cot 2 \theta = \sqrt { } 3\)
  2. \(\tan \theta + \cot \theta = 5\) Give your answers to 3 significant figures.
Edexcel C34 2014 January Q9
9. (a) Use the substitution \(u = 4 - \sqrt { } x\) to find $$\int \frac { \mathrm { d } x } { 4 - \sqrt { } x }$$ A team of scientists is studying a species of slow growing tree.
The rate of change in height of a tree in this species is modelled by the differential equation $$\frac { \mathrm { d } h } { \mathrm {~d} t } = \frac { 4 - \sqrt { } h } { 20 }$$ where \(h\) is the height in metres and \(t\) is the time measured in years after the tree is planted.
(b) Find the range in values of \(h\) for which the height of a tree in this species is increasing.
(c) Given that one of these trees is 1 metre high when it is planted, calculate the time it would take to reach a height of 10 metres. Write your answer to 3 significant figures.
\includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-31_154_145_2599_1804}
Edexcel C34 2014 January Q10
10. With respect to a fixed origin \(O\), the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$\begin{aligned} & l _ { 1 } : \mathbf { r } = ( \mathbf { i } + 5 \mathbf { j } + 5 \mathbf { k } ) + \lambda ( 2 \mathbf { i } + \mathbf { j } - \mathbf { k } )
& l _ { 2 } : \mathbf { r } = ( 2 \mathbf { j } + 12 \mathbf { k } ) + \mu ( 3 \mathbf { i } - \mathbf { j } + 5 \mathbf { k } ) \end{aligned}$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) meet and find the position vector of their point of intersection.
  2. Show that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular to each other. The point \(A\), with position vector \(5 \mathbf { i } + 7 \mathbf { j } + 3 \mathbf { k }\), lies on \(l _ { 1 }\)
    The point \(B\) is the image of \(A\) after reflection in the line \(l _ { 2 }\)
  3. Find the position vector of \(B\).
    \includegraphics[max width=\textwidth, alt={}, center]{5b698944-41ac-4072-b5e1-c580b7752c39-35_133_163_2604_1786}
Edexcel C34 2014 January Q11
11. The curve \(C\) has parametric equations $$x = 10 \cos 2 t , \quad y = 6 \sin t , \quad - \frac { \pi } { 2 } \leqslant t \leqslant \frac { \pi } { 2 }$$ The point \(A\) with coordinates \(( 5,3 )\) lies on \(C\).
  1. Find the value of \(t\) at the point \(A\).
  2. Show that an equation of the normal to \(C\) at \(A\) is $$3 y = 10 x - 41$$ The normal to \(C\) at \(A\) cuts \(C\) again at the point \(B\).
  3. Find the exact coordinates of \(B\).
Edexcel C34 2014 January Q12
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{5b698944-41ac-4072-b5e1-c580b7752c39-40_695_1212_276_420} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve with equation $$y = x ( \sin x + \cos x ) , \quad 0 \leqslant x \leqslant \frac { \pi } { 4 }$$ The finite region \(R\), shown shaded in Figure 4, is bounded by the curve, the \(x\)-axis and the line \(x = \frac { \pi } { 4 }\). This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution, with volume \(V\).
  1. Assuming the formula for volume of revolution show that \(V = \int _ { 0 } ^ { \frac { \pi } { 4 } } \pi x ^ { 2 } ( 1 + \sin 2 x ) \mathrm { d } x\)
  2. Hence using calculus find the exact value of \(V\). You must show your working.
    (Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C34 2015 January Q1
  1. The curve \(C\) has equation
$$y = \frac { 3 x - 2 } { ( x - 2 ) ^ { 2 } } , \quad x \neq 2$$ The point \(P\) on \(C\) has \(x\) coordinate 3
Find an equation of the normal to \(C\) at the point \(P\) in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel C34 2015 January Q2
2. Solve, for \(0 \leqslant \theta < 2 \pi\), $$2 \cos 2 \theta = 5 - 13 \sin \theta$$ Give your answers in radians to 3 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C34 2015 January Q3
3. The function \(g\) is defined by $$\mathrm { g } : x \mapsto | 8 - 2 x | , \quad x \in \mathbb { R } , \quad x \geqslant 0$$
  1. Sketch the graph with equation \(y = \mathrm { g } ( x )\), showing the coordinates of the points where the graph cuts or meets the axes.
  2. Solve the equation $$| 8 - 2 x | = x + 5$$ The function f is defined by $$\mathrm { f } : x \mapsto x ^ { 2 } - 3 x + 1 , \quad x \in \mathbb { R } , \quad 0 \leqslant x \leqslant 4$$
  3. Find fg(5).
  4. Find the range of f. You must make your method clear.
Edexcel C34 2015 January Q4
4. Use the substitution \(x = 2 \sin \theta\) to find the exact value of $$\int _ { 0 } ^ { \sqrt { 3 } } \frac { 1 } { \left( 4 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x$$
Edexcel C34 2015 January Q5
  1. (a) Use the binomial expansion, in ascending powers of \(x\), of \(\frac { 1 } { \sqrt { } ( 1 - 2 x ) }\) to show that
$$\frac { 2 + 3 x } { \sqrt { } ( 1 - 2 x ) } \approx 2 + 5 x + 6 x ^ { 2 } , \quad | x | < 0.5$$ (b) Substitute \(x = \frac { 1 } { 20 }\) into $$\frac { 2 + 3 x } { \sqrt { } ( 1 - 2 x ) } = 2 + 5 x + 6 x ^ { 2 }$$ to obtain an approximation to \(\sqrt { 10 }\)
Give your answer as a fraction in its simplest form.
Edexcel C34 2015 January Q6
6. (i) Given \(x = \tan ^ { 2 } 4 y , 0 < y < \frac { \pi } { 8 }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) as a function of \(x\). Write your answer in the form \(\frac { 1 } { A \left( x ^ { p } + x ^ { q } \right) }\), where \(A , p\) and \(q\) are constants to
be found.
(ii) The volume \(V\) of a cube is increasing at a constant rate of \(2 \mathrm {~cm} ^ { 3 } \mathrm {~s} ^ { - 1 }\). Find the rate at which the length of the edge of the cube is increasing when the volume of the cube is \(64 \mathrm {~cm} ^ { 3 }\).
Edexcel C34 2015 January Q7
7. (a) Given that $$2 \cos ( x + 30 ) ^ { \circ } = \sin ( x - 30 ) ^ { \circ }$$ without using a calculator, show that $$\tan x ^ { \circ } = 3 \sqrt { 3 } - 4$$ (b) Hence or otherwise solve, for \(0 \leqslant \theta < 180\), $$2 \cos ( 2 \theta + 40 ) ^ { \circ } = \sin ( 2 \theta - 20 ) ^ { \circ }$$ Give your answers to one decimal place.
Edexcel C34 2015 January Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-13_743_1198_219_372} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The value of Lin's car is modelled by the formula $$V = 18000 \mathrm { e } ^ { - 0.2 t } + 4000 \mathrm { e } ^ { - 0.1 t } + 1000 , \quad t \geqslant 0$$ where the value of the car is \(V\) pounds when the age of the car is \(t\) years.
A sketch of \(t\) against \(V\) is shown in Figure 1.
  1. State the range of \(V\). According to this model,
  2. find the rate at which the value of the car is decreasing when \(t = 10\) Give your answer in pounds per year.
  3. Calculate the exact value of \(t\) when \(V = 15000\)
Edexcel C34 2015 January Q9
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-15_618_899_262_566} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curve \(C\) has parametric equations $$x = \ln ( t + 2 ) , \quad y = \frac { 4 } { t ^ { 2 } } \quad t > 0$$ The finite region \(R\), shown shaded in Figure 2, is bounded by the curve \(C\), the \(x\)-axis and the lines with equations \(x = \ln 3\) and \(x = \ln 5\)
  1. Show that the area of \(R\) is given by the integral $$\int _ { 1 } ^ { 3 } \frac { 4 } { t ^ { 2 } ( t + 2 ) } \mathrm { d } t$$
  2. Hence find an exact value for the area of \(R\). Write your answer in the form ( \(a + \ln b\) ), where \(a\) and \(b\) are rational numbers.
  3. Find a cartesian equation of the curve \(C\) in the form \(y = \mathrm { f } ( x )\).
Edexcel C34 2015 January Q10
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-17_598_736_223_603} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with equation $$y = \frac { x ^ { 2 } \ln x } { 3 } - 2 x + 4 , \quad x > 0$$ Point \(A\) is the minimum turning point on the curve.
  1. Show, by using calculus, that the \(x\) coordinate of point \(A\) is a solution of $$x = \frac { 6 } { 1 + \ln \left( x ^ { 2 } \right) }$$
  2. Starting with \(x _ { 0 } = 2.27\), use the iteration $$x _ { n + 1 } = \frac { 6 } { 1 + \ln \left( x _ { n } ^ { 2 } \right) }$$ to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 3 decimal places.
  3. Use your answer to part (b) to deduce the coordinates of point \(A\) to one decimal place.
Edexcel C34 2015 January Q11
11. With respect to a fixed origin \(O\) the lines \(l _ { 1 }\) and \(l _ { 2 }\) are given by the equations $$l _ { 1 } : \mathbf { r } = \left( \begin{array} { r }
Edexcel C34 2015 January Q12
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-21_615_732_233_605} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve \(C\) with equation $$y = \frac { x ^ { 2 } \ln x } { 3 } - 2 x + 4 , \quad x > 0$$ The finite region \(S\), shown shaded in Figure 4, is bounded by the curve \(C\), the \(x\)-axis and the lines with equations \(x = 1\) and \(x = 3\)
  1. Complete the table below with the value of \(y\) corresponding to \(x = 2\). Give your answer to 4 decimal places.
    \(x\)11.522.53
    \(y\)21.30410.90891.2958
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(S\), giving your answer to 3 decimal places.
  3. Use calculus to find the exact area of \(S\). Give your answer in the form \(\frac { a } { b } + \ln c\), where \(a , b\) and \(c\) are integers.
  4. Hence calculate the percentage error in using your answer to part (b) to estimate the area of \(S\). Give your answer to one decimal place.
  5. Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of \(S\).
Edexcel C34 2015 January Q14
14
- 6
- 13 \end{array} \right) + \lambda \left( \begin{array} { r } - 2
1
4 \end{array} \right) \quad l _ { 2 } : \mathbf { r } = \left( \begin{array} { r } p
- 7
4 \end{array} \right) + \mu \left( \begin{array} { l } q
2
1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters and \(p\) and \(q\) are constants. Given that \(l _ { 1 }\) and \(l _ { 2 }\) are perpendicular,
  1. show that \(q = 3\) Given further that \(l _ { 1 }\) and \(l _ { 2 }\) intersect at point \(X\), find
  2. the value of \(p\),
  3. the coordinates of \(X\). The point \(A\) lies on \(l _ { 1 }\) and has position vector \(\left( \begin{array} { r } 6
    - 2
    3 \end{array} \right)\)
    Given that point \(B\) also lies on \(l _ { 1 }\) and that \(A B = 2 A X\)
  4. find the two possible position vectors of \(B\).
    12. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{03548211-79cb-4629-b6ca-aa9dfcc77a33-21_615_732_233_605} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} Figure 4 shows a sketch of part of the curve \(C\) with equation $$y = \frac { x ^ { 2 } \ln x } { 3 } - 2 x + 4 , \quad x > 0$$ The finite region \(S\), shown shaded in Figure 4, is bounded by the curve \(C\), the \(x\)-axis and the lines with equations \(x = 1\) and \(x = 3\)
  5. Complete the table below with the value of \(y\) corresponding to \(x = 2\). Give your answer to 4 decimal places.
    \(x\)11.522.53
    \(y\)21.30410.90891.2958
  6. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of \(S\), giving your answer to 3 decimal places.
  7. Use calculus to find the exact area of \(S\). Give your answer in the form \(\frac { a } { b } + \ln c\), where \(a , b\) and \(c\) are integers.
  8. Hence calculate the percentage error in using your answer to part (b) to estimate the area of \(S\). Give your answer to one decimal place.
  9. Explain how the trapezium rule could be used to obtain a more accurate estimate for the area of \(S\). 13. (a) Express \(10 \cos \theta - 3 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\) Give the exact value of \(R\) and give the value of \(\alpha\) to 2 decimal places. Alana models the height above the ground of a passenger on a Ferris wheel by the equation $$H = 12 - 10 \cos ( 30 t ) ^ { \circ } + 3 \sin ( 30 t ) ^ { \circ }$$ where the height of the passenger above the ground is \(H\) metres at time \(t\) minutes after the wheel starts turning.
    \includegraphics[max width=\textwidth, alt={}, center]{03548211-79cb-4629-b6ca-aa9dfcc77a33-23_419_567_516_1160}
  10. Calculate
    1. the maximum value of \(H\) predicted by this model,
    2. the value of \(t\) when this maximum first occurs. Give each answer to 2 decimal places.
  11. Calculate the value of \(t\) when the passenger is 18 m above the ground for the first time. Give your answer to 2 decimal places.
  12. Determine the time taken for the Ferris wheel to complete two revolutions.