By applying de Moivre's theorem to \(( \cos \theta + i \sin \theta ) ^ { 4 }\), where \(\cos \theta \neq 0\), show that
$$( 1 + i \tan \theta ) ^ { 4 } + ( 1 - i \tan \theta ) ^ { 4 } = \frac { 2 \cos 4 \theta } { \cos ^ { 4 } \theta }$$
Hence show that \(z = \mathrm { i } \tan \frac { \pi } { 8 }\) satisfies the equation \(( 1 + z ) ^ { 4 } + ( 1 - z ) ^ { 4 } = 0\), and express the three other roots of this equation in the form \(\mathrm { i } \tan \phi\), where \(0 < \phi < \pi\).
Use the results from part (b) to find the values of: