AQA FP2 2016 June — Question 8

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionJune
TopicComplex numbers 2

8
  1. By applying de Moivre's theorem to \(( \cos \theta + i \sin \theta ) ^ { 4 }\), where \(\cos \theta \neq 0\), show that $$( 1 + i \tan \theta ) ^ { 4 } + ( 1 - i \tan \theta ) ^ { 4 } = \frac { 2 \cos 4 \theta } { \cos ^ { 4 } \theta }$$
  2. Hence show that \(z = \mathrm { i } \tan \frac { \pi } { 8 }\) satisfies the equation \(( 1 + z ) ^ { 4 } + ( 1 - z ) ^ { 4 } = 0\), and express the three other roots of this equation in the form \(\mathrm { i } \tan \phi\), where \(0 < \phi < \pi\).
  3. Use the results from part (b) to find the values of:
    1. \(\tan ^ { 2 } \frac { \pi } { 8 } \tan ^ { 2 } \frac { 3 \pi } { 8 }\);
    2. \(\tan ^ { 2 } \frac { \pi } { 8 } + \tan ^ { 2 } \frac { 3 \pi } { 8 }\).
      \includegraphics[max width=\textwidth, alt={}]{a629b09d-3633-4dbd-83db-7eb89577438c-23_2488_1709_219_153}
      \section*{DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED}