AQA FP2 2007 January — Question 4

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicHyperbolic functions

4
  1. Given that \(y = \operatorname { sech } t\), show that:
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - \operatorname { sech } t \tanh t\);
    2. \(\left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \operatorname { sech } ^ { 2 } t - \operatorname { sech } ^ { 4 } t\).
  2. The diagram shows a sketch of part of the curve given parametrically by $$x = t - \tanh t \quad y = \operatorname { sech } t$$
    \includegraphics[max width=\textwidth, alt={}]{1891766e-7744-49ac-82b6-7e51cb63b381-3_424_625_863_703}
    The curve meets the \(y\)-axis at the point \(K\), and \(P ( x , y )\) is a general point on the curve. The arc length \(K P\) is denoted by \(s\). Show that:
    1. \(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \tanh ^ { 2 } t\);
    2. \(s = \ln \cosh t\);
    3. \(y = \mathrm { e } ^ { - s }\).
  3. The arc \(K P\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the surface area generated is $$2 \pi \left( 1 - \mathrm { e } ^ { - S } \right)$$ (4 marks)