The curve meets the \(y\)-axis at the point \(K\), and \(P ( x , y )\) is a general point on the curve. The arc length \(K P\) is denoted by \(s\). Show that:
\(\left( \frac { \mathrm { d } x } { \mathrm {~d} t } \right) ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} t } \right) ^ { 2 } = \tanh ^ { 2 } t\);
\(s = \ln \cosh t\);
\(y = \mathrm { e } ^ { - s }\).
The arc \(K P\) is rotated through \(2 \pi\) radians about the \(x\)-axis. Show that the surface area generated is
$$2 \pi \left( 1 - \mathrm { e } ^ { - S } \right)$$
(4 marks)