3 The arc of the curve with equation \(y = 4 - \ln \left( 1 - x ^ { 2 } \right)\) from \(x = 0\) to \(x = \frac { 3 } { 4 }\) has length \(s\).
- Show that \(s = \int _ { 0 } ^ { \frac { 3 } { 4 } } \left( \frac { 1 + x ^ { 2 } } { 1 - x ^ { 2 } } \right) \mathrm { d } x\).
- Find the value of \(s\), giving your answer in the form \(p + \ln N\), where \(p\) is a rational number and \(N\) is an integer.
[0pt]
[6 marks]
\includegraphics[max width=\textwidth, alt={}]{a629b09d-3633-4dbd-83db-7eb89577438c-06_1870_1717_840_150}