3 The complex numbers \(z _ { 1 }\) and \(z _ { 2 }\) are given by
$$z _ { 1 } = \frac { 1 + \mathrm { i } } { 1 - \mathrm { i } } \quad \text { and } \quad z _ { 2 } = \frac { 1 } { 2 } + \frac { \sqrt { 3 } } { 2 } \mathrm { i }$$
- Show that \(z _ { 1 } = \mathrm { i }\).
- Show that \(\left| z _ { 1 } \right| = \left| z _ { 2 } \right|\).
- Express both \(z _ { 1 }\) and \(z _ { 2 }\) in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
- Draw an Argand diagram to show the points representing \(z _ { 1 } , z _ { 2 }\) and \(z _ { 1 } + z _ { 2 }\).
- Use your Argand diagram to show that
$$\tan \frac { 5 } { 12 } \pi = 2 + \sqrt { 3 }$$