Questions — OCR MEI (4301 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR MEI C1 Q1
1 Expand \(( 2 x + 5 ) ( x - 1 ) ( x + 3 )\), simplifying your answer.
OCR MEI C1 Q2
2 Find the discriminant of \(3 x ^ { 2 } + 5 x + 2\). Hence state the number of distinct real roots of the equation \(3 x ^ { 2 } + 5 x + 2 = 0\).
OCR MEI C1 Q3
3 Make \(x\) the subject of the formula \(y = \frac { 1 - 2 x } { x + 3 }\).
OCR MEI C1 Q4
4 Factorise \(n ^ { 3 } + 3 n ^ { 2 } + 2 n\). Hence prove that, when \(n\) is a positive integer, \(n ^ { 3 } + 3 n ^ { 2 } + 2 n\) is always divisible by 6 .
OCR MEI C1 Q5
5 Express \(5 x ^ { 2 } + 20 x + 6\) in the form \(a ( x + b ) ^ { 2 } + c\).
OCR MEI C1 Q6
6 Rearrange the formula \(c = \sqrt { \frac { a + b } { 2 } }\) to make \(a\) the subject.
\(7 \quad\) Make \(a\) the subject of the formula \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\).
OCR MEI C1 Q8
8 Prove that, when \(n\) is an integer, \(n ^ { 3 } - n\) is always even.
OCR MEI C1 Q9
9
  1. Express \(x ^ { 2 } + 6 x + 5\) in the form \(( x + a ) ^ { 2 } + b\).
  2. Write down the coordinates of the minimum point on the graph of \(y = x ^ { 2 } + 6 x + 5\).
OCR MEI C1 Q10
10 Find the real roots of the equation \(x ^ { 4 } - 5 x ^ { 2 } - 36 = 0\) by considering it as a quadratic equation in \(x ^ { 2 }\).
OCR MEI C1 Q11
11 Solve the equation \(\frac { 3 x + 1 } { 2 x } = 4\).
OCR MEI C1 Q12
12 Find the range of values of \(k\) for which the equation \(2 x ^ { 2 } + k x + 18 = 0\) does not have real roots.
OCR MEI C1 Q13
13 Rearrange \(y + 5 = x ( y + 2 )\) to make \(y\) the subject of the formula.
OCR MEI FP2 2006 June Q1
1
  1. A curve has polar equation \(r = a ( \sqrt { 2 } + 2 \cos \theta )\) for \(- \frac { 3 } { 4 } \pi \leqslant \theta \leqslant \frac { 3 } { 4 } \pi\), where \(a\) is a positive constant.
    1. Sketch the curve.
    2. Find, in an exact form, the area of the region enclosed by the curve.
    1. Find the Maclaurin series for the function \(\mathrm { f } ( x ) = \tan \left( \frac { 1 } { 4 } \pi + x \right)\), up to the term in \(x ^ { 2 }\).
    2. Use the Maclaurin series to show that, when \(h\) is small, $$\int _ { - h } ^ { h } x ^ { 2 } \tan \left( \frac { 1 } { 4 } \pi + x \right) \mathrm { d } x \approx \frac { 2 } { 3 } h ^ { 3 } + \frac { 4 } { 5 } h ^ { 5 }$$
OCR MEI FP2 2006 June Q2
2
    1. Given that \(z = \cos \theta + \mathrm { j } \sin \theta\), express \(z ^ { n } + \frac { 1 } { z ^ { n } }\) and \(z ^ { n } - \frac { 1 } { z ^ { n } }\) in simplified trigonometric form.
    2. By considering \(\left( z - \frac { 1 } { z } \right) ^ { 4 } \left( z + \frac { 1 } { z } \right) ^ { 2 }\), find \(A , B , C\) and \(D\) such that $$\sin ^ { 4 } \theta \cos ^ { 2 } \theta = A \cos 6 \theta + B \cos 4 \theta + C \cos 2 \theta + D$$
    1. Find the modulus and argument of \(4 + 4 \mathrm { j }\).
    2. Find the fifth roots of \(4 + 4 \mathrm { j }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). Illustrate these fifth roots on an Argand diagram.
    3. Find integers \(p\) and \(q\) such that \(( p + q \mathrm { j } ) ^ { 5 } = 4 + 4 \mathrm { j }\).
OCR MEI FP2 2006 June Q3
3
  1. Find the inverse of the matrix \(\left( \begin{array} { r r r } 4 & 1 & k
    3 & 2 & 5
    8 & 5 & 13 \end{array} \right)\), where \(k \neq 5\).
  2. Solve the simultaneous equations $$\begin{aligned} & 4 x + y + 7 z = 12
    & 3 x + 2 y + 5 z = m
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ giving \(x , y\) and \(z\) in terms of \(m\).
  3. Find the value of \(p\) for which the simultaneous equations $$\begin{aligned} & 4 x + y + 5 z = 12
    & 3 x + 2 y + 5 z = p
    & 8 x + 5 y + 13 z = 0 \end{aligned}$$ have solutions, and find the general solution in this case.
OCR MEI FP2 2006 June Q4
4
  1. Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$1 + 2 \sinh ^ { 2 } x = \cosh 2 x$$
  2. Solve the equation $$2 \cosh 2 x + \sinh x = 5 ,$$ giving the answers in an exact logarithmic form.
  3. Show that \(\int _ { 0 } ^ { \ln 3 } \sinh ^ { 2 } x \mathrm {~d} x = \frac { 10 } { 9 } - \frac { 1 } { 2 } \ln 3\).
  4. Find the exact value of \(\int _ { 3 } ^ { 5 } \sqrt { x ^ { 2 } - 9 } \mathrm {~d} x\).
OCR MEI FP2 2007 June Q1
1
  1. A curve has polar equation \(r = a ( 1 - \cos \theta )\), where \(a\) is a positive constant.
    1. Sketch the curve.
    2. Find the area of the region enclosed by the section of the curve for which \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\) and the line \(\theta = \frac { 1 } { 2 } \pi\).
  2. Use a trigonometric substitution to show that \(\int _ { 0 } ^ { 1 } \frac { 1 } { \left( 4 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } } \mathrm {~d} x = \frac { 1 } { 4 \sqrt { 3 } }\).
  3. In this part of the question, \(\mathrm { f } ( x ) = \arccos ( 2 x )\).
    1. Find \(\mathrm { f } ^ { \prime } ( x )\).
    2. Use a standard series to expand \(\mathrm { f } ^ { \prime } ( x )\), and hence find the series for \(\mathrm { f } ( x )\) in ascending powers of \(x\), up to the term in \(x ^ { 5 }\).
OCR MEI FP2 2007 June Q2
2
  1. Use de Moivre's theorem to show that \(\sin 5 \theta = 5 \sin \theta - 20 \sin ^ { 3 } \theta + 16 \sin ^ { 5 } \theta\).
    1. Find the cube roots of \(- 2 + 2 \mathrm { j }\) in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\) where \(r > 0\) and \(- \pi < \theta \leqslant \pi\). These cube roots are represented by points \(\mathrm { A } , \mathrm { B }\) and C in the Argand diagram, with A in the first quadrant and ABC going anticlockwise. The midpoint of AB is M , and M represents the complex number \(w\).
    2. Draw an Argand diagram, showing the points \(\mathrm { A } , \mathrm { B } , \mathrm { C }\) and M .
    3. Find the modulus and argument of \(w\).
    4. Find \(w ^ { 6 }\) in the form \(a + b \mathrm { j }\).
OCR MEI FP2 2007 June Q3
3 Let \(\mathbf { M } = \left( \begin{array} { r r r } 3 & 5 & 2
5 & 3 & - 2
2 & - 2 & - 4 \end{array} \right)\).
  1. Show that the characteristic equation for \(\mathbf { M }\) is \(\lambda ^ { 3 } - 2 \lambda ^ { 2 } - 48 \lambda = 0\). You are given that \(\left( \begin{array} { r } 1
    - 1
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { M }\) corresponding to the eigenvalue 0 .
  2. Find the other two eigenvalues of \(\mathbf { M }\), and corresponding eigenvectors.
  3. Write down a matrix \(\mathbf { P }\), and a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { P } ^ { - 1 } \mathbf { M } ^ { 2 } \mathbf { P } = \mathbf { D }\).
  4. Use the Cayley-Hamilton theorem to find integers \(a\) and \(b\) such that \(\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M }\). Section B (18 marks)
OCR MEI FP2 2007 June Q4
4
  1. Find \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 9 x ^ { 2 } + 16 } } \mathrm {~d} x\), giving your answer in an exact logarithmic form.
    1. Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that \(\sinh 2 x = 2 \sinh x \cosh x\).
    2. Show that one of the stationary points on the curve $$y = 20 \cosh x - 3 \cosh 2 x$$ has coordinates \(\left( \ln 3 , \frac { 59 } { 3 } \right)\), and find the coordinates of the other two stationary points.
    3. Show that \(\int _ { - \ln 3 } ^ { \ln 3 } ( 20 \cosh x - 3 \cosh 2 x ) \mathrm { d } x = 40\).
OCR MEI FP2 2007 June Q5
5 The curve with equation \(y = \frac { x ^ { 2 } - k x + 2 k } { x + k }\) is to be investigated for different values of \(k\).
  1. Use your graphical calculator to obtain rough sketches of the curve in the cases \(k = - 2\), \(k = - 0.5\) and \(k = 1\).
  2. Show that the equation of the curve may be written as \(y = x - 2 k + \frac { 2 k ( k + 1 ) } { x + k }\). Hence find the two values of \(k\) for which the curve is a straight line.
  3. When the curve is not a straight line, it is a conic.
    (A) Name the type of conic.
    (B) Write down the equations of the asymptotes.
  4. Draw a sketch to show the shape of the curve when \(1 < k < 8\). This sketch should show where the curve crosses the axes and how it approaches its asymptotes. Indicate the points A and B on the curve where \(x = 1\) and \(x = k\) respectively.
OCR MEI FP2 2008 June Q1
1
  1. A curve has cartesian equation \(\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 3 x y ^ { 2 }\).
    1. Show that the polar equation of the curve is \(r = 3 \cos \theta \sin ^ { 2 } \theta\).
    2. Hence sketch the curve.
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 4 - 3 x ^ { 2 } } } \mathrm {~d} x\).
    1. Write down the series for \(\ln ( 1 + x )\) and the series for \(\ln ( 1 - x )\), both as far as the term in \(x ^ { 5 }\).
    2. Hence find the first three non-zero terms in the series for \(\ln \left( \frac { 1 + x } { 1 - x } \right)\).
    3. Use the series in part (ii) to show that \(\sum _ { r = 0 } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) 4 ^ { r } } = \ln 3\).
OCR MEI FP2 2008 June Q2
2 You are given the complex numbers \(z = \sqrt { 32 } ( 1 + \mathrm { j } )\) and \(w = 8 \left( \cos \frac { 7 } { 12 } \pi + \mathrm { j } \sin \frac { 7 } { 12 } \pi \right)\).
  1. Find the modulus and argument of each of the complex numbers \(z , z ^ { * } , z w\) and \(\frac { z } { w }\).
  2. Express \(\frac { z } { w }\) in the form \(a + b \mathrm { j }\), giving the exact values of \(a\) and \(b\).
  3. Find the cube roots of \(z\), in the form \(r \mathrm { e } ^ { \mathrm { j } \theta }\), where \(r > 0\) and \(- \pi < \theta \leqslant \pi\).
  4. Show that the cube roots of \(z\) can be written as $$k _ { 1 } w ^ { * } , \quad k _ { 2 } z ^ { * } \quad \text { and } \quad k _ { 3 } \mathrm { j } w ,$$ where \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\) are real numbers. State the values of \(k _ { 1 } , k _ { 2 }\) and \(k _ { 3 }\).
OCR MEI FP2 2008 June Q3
3
  1. Given the matrix \(\mathbf { Q } = \left( \begin{array} { r r r } 2 & - 1 & k
    1 & 0 & 1
    3 & 1 & 2 \end{array} \right)\) (where \(k \neq 3\) ), find \(\mathbf { Q } ^ { - 1 }\) in terms of \(k\).
    Show that, when \(k = 4 , \mathbf { Q } ^ { - 1 } = \left( \begin{array} { r r r } - 1 & 6 & - 1
    1 & - 8 & 2
    1 & - 5 & 1 \end{array} \right)\). The matrix \(\mathbf { M }\) has eigenvectors \(\left( \begin{array} { l } 2
    1
    3 \end{array} \right) , \left( \begin{array} { r } - 1
    0
    1 \end{array} \right)\) and \(\left( \begin{array} { l } 4
    1
    2 \end{array} \right)\), with corresponding eigenvalues \(1 , - 1\) and 3 respectively.
  2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { - 1 } \mathbf { M P } = \mathbf { D }\), and hence find the matrix \(\mathbf { M }\).
  3. Write down the characteristic equation for \(\mathbf { M }\), and use the Cayley-Hamilton theorem to find integers \(a , b\) and \(c\) such that \(\mathbf { M } ^ { 4 } = a \mathbf { M } ^ { 2 } + b \mathbf { M } + c \mathbf { I }\). Section B (18 marks)
OCR MEI FP2 2008 June Q4
4
  1. Starting from the definitions of \(\sinh x\) and \(\cosh x\) in terms of exponentials, prove that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1$$
  2. Solve the equation \(4 \cosh ^ { 2 } x + 9 \sinh x = 13\), giving the answers in exact logarithmic form.
  3. Show that there is only one stationary point on the curve $$y = 4 \cosh ^ { 2 } x + 9 \sinh x$$ and find the \(y\)-coordinate of the stationary point.
  4. Show that \(\int _ { 0 } ^ { \ln 2 } \left( 4 \cosh ^ { 2 } x + 9 \sinh x \right) \mathrm { d } x = 2 \ln 2 + \frac { 33 } { 8 }\).