Questions SPS ASFM Statistics (6 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
SPS SPS ASFM Statistics 2021 May Q1
  1. (a) The complex number \(3 + 2 \mathrm { i }\) is denoted by \(w\) and the complex conjugate of \(w\) is denoted by \(w ^ { * }\). Find
    1. the modulus of \(w\),
    2. the argument of \(w ^ { * }\), giving your answer in radians, correct to 2 decimal places.
      (b) Find the complex number \(u\) given that \(u + 2 u ^ { * } = 3 + 2 \mathrm { i }\).
      (c) Sketch, on an Argand diagram, the locus given by \(| z + 1 | = | z |\).
      [0pt] [BLANK PAGE]
  2. Find the value of \(k\) such that \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right)\) and \(\left( \begin{array} { r } - 2
    3
    k \end{array} \right)\) are perpendicular. Two lines have equations \(l _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 3
    2
    7 \end{array} \right) + \lambda \left( \begin{array} { r } 1
    - 1
    3 \end{array} \right)\) and \(l _ { 2 } : \mathbf { r } = \left( \begin{array} { l } 6
    5
    2 \end{array} \right) + \mu \left( \begin{array} { r } 2
    1
    - 1 \end{array} \right)\).
  3. Find the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).
  4. The vector \(\left( \begin{array} { l } 1
    a
    b \end{array} \right)\) is perpendicular to the lines \(l _ { 1 }\) and \(l _ { 2 }\). Find the values of \(a\) and \(b\).
    [0pt] [BLANK PAGE]
SPS SPS ASFM Statistics 2021 May Q3
3. The members of a team stand in a random order in a straight line for a photograph. There are four men and six women.
  1. Find the probability that all the men are next to each other.
  2. Find the probability that no two men are next to one another.
    [0pt] [BLANK PAGE]
SPS SPS ASFM Statistics 2021 May Q4
4. Every time a spinner is spun, the probability that it shows the number 4 is 0.2 , independently of all other spins.
  1. A pupil spins the spinner repeatedly until it shows the number 4 . Find the mean of the number of spins required.
  2. Calculate the probability that the number of spins required is between 3 and 10 inclusive.
  3. Each pupil in a class of 30 spins the spinner until it shows the number 4 . Out of the 30 pupils, the number of pupils who require at least 10 spins is denoted by \(X\). Determine the variance of \(X\).
    [0pt] [BLANK PAGE]
SPS SPS ASFM Statistics 2021 May Q5
8 marks
5. Arlosh, Sarah and Desi are investigating the ratings given to six different films by two critics.
  1. Arlosh calculates Spearman's rank correlation coefficient \(r _ { s }\) for the critics' ratings. He calculates that \(\Sigma d ^ { 2 } = 72\). Show that this value must be incorrect.
    [0pt] [2]
  2. Arlosh checks his working with Sarah, whose answer \(r _ { s } = \frac { 29 } { 35 }\) is correct. Find the correct value of \(\Sigma d ^ { 2 }\).
    [0pt] [2]
  3. Carry out an appropriate two-tailed significance test of the value of \(r _ { s }\) at the \(5 \%\) significance level, stating your hypotheses clearly.
    [0pt] [4]
    [0pt] [BLANK PAGE]
SPS SPS ASFM Statistics 2021 May Q6
6. A spinner has edges numbered \(1,2,3,4\) and 5 . When the spinner is spun, the number of the edge on which it lands is the score. The probability distribution of the score, \(N\), is given in the table.
Score, \(N\)12345
Probability0.30.20.2\(x\)\(y\)
It is known that \(\mathrm { E } ( N ) = 2.55\).
  1. Find \(\operatorname { Var } ( N )\).
  2. Find \(\mathrm { E } ( 3 N + 2 )\).
  3. Find \(\operatorname { Var } ( 3 N + 2 )\).
    [0pt] [BLANK PAGE] A cloth manufacturer knows that faults occur randomly in the production process at a rate of 2 every 15 metres.
    (a) Find the probability of exactly 4 faults in a 15 metre length of cloth.
    (b) Find the probability of more than 10 faults in 60 metres of cloth. A retailer buys a large amount of this cloth and sells it in pieces of length \(x\) metres. He chooses \(x\) so that the probability of no faults in a piece is 0.80
    (c) Write down an equation for \(x\) and show that \(x = 1.7\) to 2 significant figures. The retailer sells 1200 of these pieces of cloth. He makes a profit of 60 p on each piece of cloth that does not contain a fault but a loss of \(\pounds 1.50\) on any pieces that do contain faults.
    (d) Find the retailer's expected profit.
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
SPS SPS ASFM Statistics 2025 January Q1
  1. \(\mathrm { E } ( a X + b Y + c ) = a \mathrm { E } ( X ) + b \mathrm { E } ( Y ) + c\),
  2. if \(X\) and \(Y\) are independent then \(\operatorname { Var } ( a X + b Y + c ) = a ^ { 2 } \operatorname { Var } ( X ) + b ^ { 2 } \operatorname { Var } ( Y )\).
\section*{Non-parametric tests} Goodness-of-fit test and contingency tables: \(\sum \frac { \left( O _ { i } - E _ { i } \right) ^ { 2 } } { E _ { i } } \sim \chi _ { v } ^ { 2 }\)
Approximate distributions for large samples
Wilcoxon Signed Rank test: \(T \sim \mathrm {~N} \left( \frac { 1 } { 4 } n ( n + 1 ) , \frac { 1 } { 24 } n ( n + 1 ) ( 2 n + 1 ) \right)\)
Wilcoxon Rank Sum test (samples of sizes \(m\) and \(n\), with \(m \leq n\) ): $$W \sim \mathrm {~N} \left( \frac { 1 } { 2 } m ( m + n + 1 ) , \frac { 1 } { 12 } m n ( m + n + 1 ) \right)$$ \section*{Discrete distributions} \(X\) is a random variable taking values \(x _ { i }\) in a discrete distribution with \(\mathrm { P } \left( X = x _ { i } \right) = p _ { i }\)
Expectation: \(\mu = \mathrm { E } ( X ) = \sum x _ { i } p _ { i }\)
Variance: \(\sigma ^ { 2 } = \operatorname { Var } ( X ) = \sum \left( x _ { i } - \mu \right) ^ { 2 } p _ { i } = \sum x _ { i } ^ { 2 } p _ { i } - \mu ^ { 2 }\) \(n = 8 \quad \sum p = 28.5 \quad \sum q = 26.7 \quad \sum p ^ { 2 } = 136.35 \quad \sum q ^ { 2 } = 116.35 \quad \sum p q = 116.70\)
\includegraphics[max width=\textwidth, alt={}, center]{76f751ed-394d-41cb-b98f-bc8efcf3365e-08_705_1164_1139_267}
  1. State which, if either, of the variables \(p\) and \(q\) is independent.
  2. Calculate the equation of the regression line of \(q\) on \(p\).
    1. Use the regression line to estimate the value of \(q\) for an investment account for which \(p = 2.5\).
    2. Give two reasons why this estimate could be considered reliable.
  3. Comment on the reliability of using the regression line to predict the value of \(q\) when \(p = 7.0\). Total: \(\_\_\_\_\) / 9 marks \section*{Question 4} After a holiday organised for a group, the company organising the holiday obtained scores out of 10 for six different aspects of the holiday. The company obtained responses from 100 couples and 100 single travellers. The total scores for each of the aspects are given in the following table. After further investigation, the statistician decides to use a different model for the distribution of \(F\). In this model it is now assumed that \(\mathrm { P } ( F = 0 )\) is still 0.200 , but that if one failure occurs, there is an increased probability that further failures occur.
  4. Explain the effect of this assumption on the value of \(\mathrm { P } ( F = 1 )\). Total: \(\_\_\_\_\) / 10 marks \section*{Question 6} In a fashion competition, two judges gave marks to a large number of contestants.
    The value of Spearman's rank correlation coefficient, \(r _ { s }\), between the marks given to 7 randomly chosen contestants is \(\frac { 27 } { 28 }\).
  5. An excerpt from the table of critical values of \(r _ { s }\) is shown below. \section*{Critical values of Spearman's rank correlation coefficient}
    1-tail test5\%2.5\%1\%0.5\%
    2-tail test10\%5\%2\%1\%
    \multirow{3}{*}{\(n\)}60.82860.88570.94291.0000
    70.71430.78570.89290.9286
    80.64290.73810.83330.8810
    Test whether there is evidence, at the \(1 \%\) significance level, that the judges agree with each another. The marks given by the two judges to the 7 randomly chosen contestants were as follows, where \(x\) is an integer.
    Contestant\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)
    Judge 164656778798086
    Judge 2616378808190\(x\)
  6. Use the value \(r _ { s } = \frac { 27 } { 28 }\) to determine the range of possible values of \(x\).
  7. Give a reason why it might be preferable to use the product moment correlation coefficient rather than Spearman's rank correlation coefficient in this context. Total: \(\_\_\_\_\) / 9 marks \section*{Question 7} A bag contains \(2 m\) yellow and \(m\) green counters. Three counters are chosen at random, without replacement. The probability that exactly two of the three counters are yellow is \(\frac { 28 } { 55 }\). Determine the value of \(m\). Total: \(\_\_\_\_\) End of Paper