AQA FP2 2008 January — Question 3

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2008
SessionJanuary
TopicComplex Numbers Argand & Loci

3 A circle \(C\) and a half-line \(L\) have equations $$| z - 2 \sqrt { 3 } - \mathrm { i } | = 4$$ and $$\arg ( z + i ) = \frac { \pi } { 6 }$$ respectively.
  1. Show that:
    1. the circle \(C\) passes through the point where \(z = - \mathrm { i }\);
    2. the half-line \(L\) passes through the centre of \(C\).
  2. On one Argand diagram, sketch \(C\) and \(L\).
  3. Shade on your sketch the set of points satisfying both $$| z - 2 \sqrt { 3 } - \mathrm { i } | \leqslant 4$$ and $$0 \leqslant \arg ( z + i ) \leqslant \frac { \pi } { 6 }$$