Questions — AQA (3508 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
AQA FP3 2008 January Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x ^ { 2 } - y ^ { 2 }$$ and $$y ( 2 ) = 1$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 2.1 )\).
  2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a), to obtain an approximation to \(y ( 2.2 )\).
AQA FP3 2008 January Q2
2 The diagram shows a sketch of part of the curve \(C\) whose polar equation is \(r = 1 + \tan \theta\). The point \(O\) is the pole.
\includegraphics[max width=\textwidth, alt={}, center]{0c177d90-02ae-4e91-bc9d-d0c7051799b8-3_561_629_406_772} The points \(P\) and \(Q\) on the curve are given by \(\theta = 0\) and \(\theta = \frac { \pi } { 3 }\) respectively.
  1. Show that the area of the region bounded by the curve \(C\) and the lines \(O P\) and \(O Q\) is $$\frac { 1 } { 2 } \sqrt { 3 } + \ln 2$$ (6 marks)
  2. Hence find the area of the shaded region bounded by the line \(P Q\) and the arc \(P Q\) of \(C\).
AQA FP3 2008 January Q3
3
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5$$
  2. Hence express \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) when \(x = 0\).
AQA FP3 2008 January Q4
4
  1. Explain why \(\int _ { 1 } ^ { \infty } x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\) is an improper integral.
  2. Find \(\int x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\).
  3. Hence evaluate \(\int _ { 1 } ^ { \infty } x \mathrm { e } ^ { - 3 x } \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2008 January Q5
5 By using an integrating factor, find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 4 x } { x ^ { 2 } + 1 } y = x$$ given that \(y = 1\) when \(x = 0\). Give your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2008 January Q6
6 A curve \(C\) has polar equation $$r ^ { 2 } \sin 2 \theta = 8$$
  1. Find the cartesian equation of \(C\) in the form \(y = \mathrm { f } ( x )\).
  2. Sketch the curve \(C\).
  3. The line with polar equation \(r = 2 \sec \theta\) intersects \(C\) at the point \(A\). Find the polar coordinates of \(A\).
AQA FP3 2008 January Q7
7
    1. Write down the expansion of \(\ln ( 1 + 2 x )\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
    2. State the range of values of \(x\) for which this expansion is valid.
    1. Given that \(y = \ln \cos x\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
    2. Find the value of \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\) when \(x = 0\).
    3. Hence, by using Maclaurin's theorem, show that the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \cos x\) are $$- \frac { x ^ { 2 } } { 2 } - \frac { x ^ { 4 } } { 12 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln ( 1 + 2 x ) } { x ^ { 2 } - \ln \cos x } \right]$$
AQA FP3 2008 January Q8
8
  1. Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that:
    1. \(x \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { \mathrm { d } y } { \mathrm {~d} t }\);
    2. \(\quad x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t }\).
  2. Hence find the general solution of the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y = 0$$
AQA FP3 2009 January Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = \frac { x ^ { 2 } + y ^ { 2 } } { x + y }$$ and $$y ( 1 ) = 3$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.2\), to obtain an approximation to \(y ( 1.2 )\).
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.2\), to obtain an approximation to \(y ( 1.2 )\), giving your answer to four decimal places.
AQA FP3 2009 January Q2
2
  1. Show that \(\frac { 1 } { x ^ { 2 } }\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { 2 } { x } y = x$$
  2. Hence find the general solution of this differential equation, giving your answer in the form \(y = \mathrm { f } ( x )\).
AQA FP3 2009 January Q3
3 The diagram shows a sketch of a loop, the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{f4fdffc7-5647-4462-a983-1564d4e76a4d-3_305_553_383_740} The polar equation of the loop is $$r = ( 2 + \cos \theta ) \sqrt { \sin \theta } , \quad 0 \leqslant \theta \leqslant \pi$$ Find the area enclosed by the loop.
AQA FP3 2009 January Q4
4
  1. Use integration by parts to show that \(\int \ln x \mathrm {~d} x = x \ln x - x + c\), where \(c\) is an arbitrary constant.
  2. Hence evaluate \(\int _ { 0 } ^ { 1 } \ln x \mathrm {~d} x\), showing the limiting process used.
AQA FP3 2009 January Q5
5 The diagram shows a sketch of a curve \(C\), the pole \(O\) and the initial line.
\includegraphics[max width=\textwidth, alt={}, center]{f4fdffc7-5647-4462-a983-1564d4e76a4d-3_301_668_1644_689} The curve \(C\) has polar equation $$r = \frac { 2 } { 3 + 2 \cos \theta } , \quad 0 \leqslant \theta \leqslant 2 \pi$$
  1. Verify that the point \(L\) with polar coordinates ( \(2 , \pi\) ) lies on \(C\).
  2. The circle with polar equation \(r = 1\) intersects \(C\) at the points \(M\) and \(N\).
    1. Find the polar coordinates of \(M\) and \(N\).
    2. Find the area of triangle \(L M N\).
  3. Find a cartesian equation of \(C\), giving your answer in the form \(9 y ^ { 2 } = \mathrm { f } ( x )\).
AQA FP3 2009 January Q6
6 The function f is defined by \(\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } ( 1 + 3 x ) ^ { - \frac { 2 } { 3 } }\).
    1. Use the series expansion for \(\mathrm { e } ^ { x }\) to write down the first four terms in the series expansion of \(\mathrm { e } ^ { 2 x }\).
    2. Use the binomial series expansion of \(( 1 + 3 x ) ^ { - \frac { 2 } { 3 } }\) and your answer to part (a)(i) to show that the first three non-zero terms in the series expansion of \(\mathrm { f } ( x )\) are \(1 + 3 x ^ { 2 } - 6 x ^ { 3 }\).
    1. Given that \(y = \ln ( 1 + 2 \sin x )\), find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
    2. By using Maclaurin's theorem, show that, for small values of \(x\), $$\ln ( 1 + 2 \sin x ) \approx 2 x - 2 x ^ { 2 }$$
  1. Find $$\lim _ { x \rightarrow 0 } \frac { 1 - \mathrm { f } ( x ) } { x \ln ( 1 + 2 \sin x ) }$$
AQA FP3 2009 January Q7
7
  1. Given that \(x = \mathrm { e } ^ { t }\) and that \(y\) is a function of \(x\), show that $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - \frac { \mathrm { d } y } { \mathrm {~d} t }$$
  2. Hence show that the substitution \(x = \mathrm { e } ^ { t }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 10$$ into $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } = 10$$
  3. Find the general solution of the differential equation \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} t } = 10\).
  4. Hence solve the differential equation \(x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 x \frac { \mathrm {~d} y } { \mathrm {~d} x } = 10\), given that \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 8\) when \(x = 1\).
AQA FP3 2010 January Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x \ln ( 2 x + y )$$ and $$y ( 3 ) = 2$$
  1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
  2. Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to four decimal places.
AQA FP3 2010 January Q2
2
  1. Given that \(y = \ln ( 4 + 3 x )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
  2. Hence, by using Maclaurin's theorem, find the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 + 3 x )\).
  3. Write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln ( 4 - 3 x )\).
  4. Show that, for small values of \(x\), $$\ln \left( \frac { 4 + 3 x } { 4 - 3 x } \right) \approx \frac { 3 } { 2 } x$$
AQA FP3 2010 January Q3
3
  1. A differential equation is given by $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ Show that the substitution $$u = \frac { \mathrm { d } y } { \mathrm {~d} x }$$ transforms this differential equation into $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$
  2. Find the general solution of $$\frac { \mathrm { d } u } { \mathrm {~d} x } + \frac { 2 } { x } u = 3$$ giving your answer in the form \(u = \mathrm { f } ( x )\).
  3. Hence find the general solution of the differential equation $$x \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } = 3 x$$ giving your answer in the form \(y = \mathrm { g } ( x )\).
AQA FP3 2010 January Q4
4
  1. Write down the expansion of \(\sin 3 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 3 }\).
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { 3 x \cos 2 x - \sin 3 x } { 5 x ^ { 3 } } \right]$$
AQA FP3 2010 January Q5
5 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 2 \mathrm { e } ^ { - 2 x }$$
  1. Find the value of the constant \(p\) for which \(y = p x \mathrm { e } ^ { - 2 x }\) is a particular integral of the given differential equation.
  2. Solve the differential equation, expressing \(y\) in terms of \(x\), given that \(y = 2\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
AQA FP3 2010 January Q6
6
  1. Explain why \(\int _ { 1 } ^ { \infty } \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\) is an improper integral.
    1. Show that the substitution \(y = \frac { 1 } { x }\) transforms \(\int \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\) into \(\int 2 y \ln y \mathrm {~d} y\).
    2. Evaluate \(\int _ { 0 } ^ { 1 } 2 y \ln y \mathrm {~d} y\), showing the limiting process used.
    3. Hence write down the value of \(\int _ { 1 } ^ { \infty } \frac { \ln x ^ { 2 } } { x ^ { 3 } } \mathrm {~d} x\).
AQA FP3 2010 January Q7
7 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = 8 x ^ { 2 } + 9 \sin x$$ (8 marks)
AQA FP3 2010 January Q8
8 The diagram shows a sketch of a curve \(C\) and a line \(L\), which is parallel to the initial line and touches the curve at the points \(P\) and \(Q\).
\includegraphics[max width=\textwidth, alt={}, center]{32de7ef6-b7aa-4bfd-a73a-e12bfc0147e2-5_506_762_447_639} The polar equation of the curve \(C\) is $$r = 4 ( 1 - \sin \theta ) , \quad 0 \leqslant \theta < 2 \pi$$ and the polar equation of the line \(L\) is $$r \sin \theta = 1$$
  1. Show that the polar coordinates of \(P\) are \(\left( 2 , \frac { \pi } { 6 } \right)\) and find the polar coordinates of \(Q\).
  2. Find the area of the shaded region \(R\) bounded by the line \(L\) and the curve \(C\). Give your answer in the form \(m \sqrt { 3 } + n \pi\), where \(m\) and \(n\) are integers.
AQA FP3 2011 January Q1
1 The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x + \sqrt { y }$$ and $$y ( 3 ) = 4$$ Use the improved Euler formula $$y _ { r + 1 } = y _ { r } + \frac { 1 } { 2 } \left( k _ { 1 } + k _ { 2 } \right)$$ where \(k _ { 1 } = h \mathrm { f } \left( x _ { r } , y _ { r } \right)\) and \(k _ { 2 } = h \mathrm { f } \left( x _ { r } + h , y _ { r } + k _ { 1 } \right)\) and \(h = 0.1\), to obtain an approximation to \(y ( 3.1 )\), giving your answer to three decimal places.
AQA FP3 2011 January Q2
2
  1. Find the values of the constants \(p\) and \(q\) for which \(p \sin x + q \cos x\) is a particular integral of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 5 y = 13 \cos x$$
  2. Hence find the general solution of this differential equation.