AQA FP2 2007 January — Question 6

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2007
SessionJanuary
TopicComplex numbers 2

6
  1. Find the three roots of \(z ^ { 3 } = 1\), giving the non-real roots in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
  2. Given that \(\omega\) is one of the non-real roots of \(z ^ { 3 } = 1\), show that $$1 + \omega + \omega ^ { 2 } = 0$$
  3. By using the result in part (b), or otherwise, show that:
    1. \(\frac { \omega } { \omega + 1 } = - \frac { 1 } { \omega }\);
    2. \(\frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } = - \omega\);
    3. \(\left( \frac { \omega } { \omega + 1 } \right) ^ { k } + \left( \frac { \omega ^ { 2 } } { \omega ^ { 2 } + 1 } \right) ^ { k } = ( - 1 ) ^ { k } 2 \cos \frac { 2 } { 3 } k \pi\), where \(k\) is an integer.