Find the three roots of \(z ^ { 3 } = 1\), giving the non-real roots in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\), where \(- \pi < \theta \leqslant \pi\).
Given that \(\omega\) is one of the non-real roots of \(z ^ { 3 } = 1\), show that
$$1 + \omega + \omega ^ { 2 } = 0$$
By using the result in part (b), or otherwise, show that: