Questions SPS ASFM Mechanics (5 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
SPS SPS ASFM Mechanics 2021 May Q1
  1. In this question you must show detailed reasoning.
The equation \(x ^ { 3 } + 3 x ^ { 2 } - 2 x + 4 = 0\) has roots \(\alpha , \beta\) and \(\gamma\).
  1. Using the identity \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } \equiv ( \alpha + \beta + \gamma ) ^ { 3 } - 3 ( \alpha \beta + \beta \gamma + \gamma \alpha ) ( \alpha + \beta + \gamma ) + 3 \alpha \beta \gamma\) find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
  2. Given that \(\alpha ^ { 3 } \beta ^ { 3 } + \beta ^ { 3 } \gamma ^ { 3 } + \gamma ^ { 3 } \alpha ^ { 3 } = 112\) find a cubic equation whose roots are \(\alpha ^ { 3 } , \beta ^ { 3 }\) and \(\gamma ^ { 3 }\).
    [0pt] [BLANK PAGE]
SPS SPS ASFM Mechanics 2021 May Q2
2. Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\), $$\mathrm { f } ( n ) = 2 ^ { 2 n - 1 } + 3 ^ { 2 n - 1 } \text { is divisible by } 5 .$$ [BLANK PAGE]
SPS SPS ASFM Mechanics 2021 May Q3
3. The \(2 \times 2\) matrix \(A\) represents a transformation \(T\) which has the following properties.
  • The image of the point \(( 0,1 )\) is the point \(( 3,4 )\).
  • An object shape whose area is 7 is transformed to an image shape whose area is 35 .
  • T has a line of invariant points.
    1. Find a possible matrix for \(\mathbf { A }\).
The transformation \(S\) is represented by the matrix \(\mathbf { B }\) where \(\mathbf { B } = \left( \begin{array} { l l } 3 & 1
2 & 2 \end{array} \right)\).
  • Find the equation of the line of invariant points of \(S\).
  • Show that any line of the form \(y = x + c\) is an invariant line of S .
    [0pt] [BLANK PAGE]
  • SPS SPS ASFM Mechanics 2021 May Q4
    4.
    \includegraphics[max width=\textwidth, alt={}, center]{3ecf08a3-5cf0-400c-ab79-b79a4dc8c9b4-08_663_446_228_164} As shown in the diagram, \(A B\) is a long thin rod which is fixed vertically with \(A\) above \(B\). One end of a light inextensible string of length 1 m is attached to \(A\) and the other end is attached to a particle \(P\) of mass \(m _ { 1 } \mathrm {~kg}\). One end of another light inextensible string of length 1 m is also attached to \(P\). Its other end is attached to a small smooth ring \(R\), of mass \(m _ { 2 } \mathrm {~kg}\), which is free to move on \(A B\). Initially, \(P\) moves in a horizontal circle of radius 0.6 m with constant angular velocity \(\omega \mathrm { rads } ^ { - 1 }\). The magnitude of the tension in string \(A P\) is denoted by \(T _ { 1 } \mathrm {~N}\) while that in string \(P R\) is denoted by \(T _ { 2 } \mathrm {~N}\).
    1. By considering forces on \(R\), express \(T _ { 2 }\) in terms of \(m _ { 2 }\).
    2. Show that
      1. \(T _ { 1 } = \frac { 49 } { 4 } \left( m _ { 1 } + m _ { 2 } \right)\),
      2. \(\omega ^ { 2 } = \frac { 49 \left( m _ { 1 } + 2 m _ { 2 } \right) } { 4 m _ { 1 } }\).
    3. Deduce that, in the case where \(m _ { 1 }\) is much bigger than \(m _ { 2 } , \omega \approx 3.5\). In a different case, where \(m _ { 1 } = 2.5\) and \(m _ { 2 } = 2.8 , P\) slows down. Eventually the system comes to rest with \(P\) and \(R\) hanging in equilibrium.
    4. Find the total energy lost by \(P\) and \(R\) as the angular velocity of \(P\) changes from the initial value of \(\omega \mathrm { rads } ^ { - 1 }\) to zero.
      [0pt] [BLANK PAGE] A car of mass 1250 kg experiences a resistance to its motion of magnitude \(k v ^ { 2 } \mathrm {~N}\), where \(k\) is a constant and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the car's speed. The car travels in a straight line along a horizontal road with its engine working at a constant rate of \(P \mathrm {~W}\). At a point \(A\) on the road the car's speed is \(15 \mathrm {~ms} ^ { - 1 }\) and it has an acceleration of magnitude \(0.54 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). At a point \(B\) on the road the car's speed is \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and it has an acceleration of magnitude \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
      1. Find the values of \(k\) and \(P\). The power is increased to 15 kW .
      2. Calculate the maximum steady speed of the car on a straight horizontal road.
        [0pt] [BLANK PAGE]
    SPS SPS ASFM Mechanics 2021 May Q6
    6. At a demolition site, bricks slide down a straight chute into a container. The chute is rough and is inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The distance travelled down the chute by each brick is 8 m . A brick of mass 3 kg is released from rest at the top of the chute. When it reaches the bottom of the chute, its speed is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Find the potential energy lost by the brick in moving down the chute.
      (2)
    2. By using the work-energy principle, or otherwise, find the constant frictional force acting on the brick as it moves down the chute.
      (5)
    3. Hence find the coefficient of friction between the brick and the chute.
      (3) Another brick of mass 3 kg slides down the chute. This brick is given an initial speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at the top of the chute.
    4. Find the speed of this brick when it reaches the bottom of the chute.
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]