AQA FP2 2016 June — Question 1 4 marks

Exam BoardAQA
ModuleFP2 (Further Pure Mathematics 2)
Year2016
SessionJune
Marks4
TopicSequences and series, recurrence and convergence

1
  1. Given that \(\mathrm { f } ( r ) = \frac { 1 } { 4 r - 1 }\), show that $$\mathrm { f } ( r ) - \mathrm { f } ( r + 1 ) = \frac { A } { ( 4 r - 1 ) ( 4 r + 3 ) }$$ where \(A\) is an integer.
  2. Use the method of differences to find the value of \(\sum _ { r = 1 } ^ { 50 } \frac { 1 } { ( 4 r - 1 ) ( 4 r + 3 ) }\), giving your answer as a fraction in its simplest form.
    [0pt] [4 marks]