A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration using inverse trig and hyperbolic functions
Q4
AQA FP2 2016 June — Question 4
4 marks
Exam Board
AQA
Module
FP2 (Further Pure Mathematics 2)
Year
2016
Session
June
Marks
4
Topic
Integration using inverse trig and hyperbolic functions
4
Given that \(y = \tan ^ { - 1 } \sqrt { ( 3 x ) }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), giving your answer in terms of \(x\).
Hence, or otherwise, show that \(\int _ { \frac { 1 } { 3 } } ^ { 1 } \frac { 1 } { ( 1 + 3 x ) \sqrt { x } } \mathrm {~d} x = \frac { \sqrt { 3 } \pi } { n }\), where \(n\) is an integer.
[0pt] [4 marks]
This paper
(7 questions)
View full paper
Q1
4
Q2
Q3
6
Q4
4
Q5
5
Q6
11
Q8