Questions — CAIE FP1 (549 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2009 June Q12 OR
The linear transformations \(\mathrm { T } _ { 1 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) and \(\mathrm { T } _ { 2 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) are represented by the matrices \(\mathbf { M } _ { 1 }\) and \(\mathbf { M } _ { 2 }\), respectively, where $$\mathbf { M } _ { 1 } = \left( \begin{array} { r r r r } 1 & 1 & 1 & 2
1 & 4 & 7 & 8
1 & 7 & 11 & 13
1 & 2 & 5 & 5 \end{array} \right) , \quad \mathbf { M } _ { 2 } = \left( \begin{array} { r r r r } 2 & 0 & - 1 & - 1
5 & 1 & - 3 & - 3
3 & - 1 & - 1 & - 1
13 & - 1 & - 6 & - 6 \end{array} \right) .$$
  1. Find a basis for \(R _ { 1 }\), the range space of \(\mathrm { T } _ { 1 }\).
  2. Find a basis for \(K _ { 2 }\), the null space of \(\mathrm { T } _ { 2 }\), and hence show that \(K _ { 2 }\) is a subspace of \(R _ { 1 }\). The set of vectors which belong to \(R _ { 1 }\) but do not belong to \(K _ { 2 }\) is denoted by \(W\).
  3. State whether \(W\) is a vector space, justifying your answer. The linear transformation \(\mathrm { T } _ { 3 } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is the result of applying \(\mathrm { T } _ { 1 }\) and then \(\mathrm { T } _ { 2 }\), in that order.
  4. Find the dimension of the null space of \(\mathrm { T } _ { 3 }\).
CAIE FP1 2010 June Q1
1 The variables \(x\) and \(y\) are such that \(y = - 1\) when \(x = 1\) and $$x ^ { 2 } + y ^ { 2 } + \left( \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 3 } = 29$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 1\).
CAIE FP1 2010 June Q2
2 The curve \(C\) has polar equation $$r = a \left( 1 - \mathrm { e } ^ { - \theta } \right)$$ where \(a\) is a positive constant and \(0 \leqslant \theta < 2 \pi\).
  1. Draw a sketch of \(C\).
  2. Show that the area of the region bounded by \(C\) and the lines \(\theta = \ln 2\) and \(\theta = \ln 4\) is $$\frac { 1 } { 2 } a ^ { 2 } \left( \ln 2 - \frac { 13 } { 32 } \right)$$
CAIE FP1 2010 June Q3
3 At any point \(( x , y )\) on the curve \(C\), $$\frac { \mathrm { d } x } { \mathrm {~d} t } = t \sqrt { } \left( t ^ { 2 } + 4 \right) \quad \text { and } \quad \frac { \mathrm { d } y } { \mathrm {~d} t } = - t \sqrt { } \left( 4 - t ^ { 2 } \right)$$ where the parameter \(t\) is such that \(0 \leqslant t \leqslant 2\). Show that the length of \(C\) is \(4 \sqrt { } 2\). Given that \(y = 0\) when \(t = 2\), determine the area of the surface generated when \(C\) is rotated through one complete revolution about the \(x\)-axis, leaving your answer in an exact form.
CAIE FP1 2010 June Q4
4 The sum \(S _ { N }\) is defined by \(S _ { N } = \sum _ { n = 1 } ^ { N } n ^ { 5 }\). Using the identity $$\left( n + \frac { 1 } { 2 } \right) ^ { 6 } - \left( n - \frac { 1 } { 2 } \right) ^ { 6 } \equiv 6 n ^ { 5 } + 5 n ^ { 3 } + \frac { 3 } { 8 } n$$ find \(S _ { N }\) in terms of \(N\). [You need not simplify your result.] Hence find \(\lim _ { N \rightarrow \infty } N ^ { - \lambda } S _ { N }\), for each of the two cases
  1. \(\lambda = 6\),
  2. \(\lambda > 6\).
CAIE FP1 2010 June Q5
5 Let $$I _ { n } = \int _ { 1 } ^ { \mathrm { e } } x ( \ln x ) ^ { n } \mathrm {~d} x$$ where \(n \geqslant 1\). Show that $$I _ { n + 1 } = \frac { 1 } { 2 } \mathrm { e } ^ { 2 } - \frac { 1 } { 2 } ( n + 1 ) I _ { n }$$ Hence prove by induction that, for all positive integers \(n , I _ { n }\) is of the form \(A _ { n } \mathrm { e } ^ { 2 } + B _ { n }\), where \(A _ { n }\) and \(B _ { n }\) are rational numbers.
CAIE FP1 2010 June Q6
6 The equation $$x ^ { 3 } + x - 1 = 0$$ has roots \(\alpha , \beta , \gamma\). Use the relation \(x = \sqrt { } y\) to show that the equation $$y ^ { 3 } + 2 y ^ { 2 } + y - 1 = 0$$ has roots \(\alpha ^ { 2 } , \beta ^ { 2 } , \gamma ^ { 2 }\). Let \(S _ { n } = \alpha ^ { n } + \beta ^ { n } + \gamma ^ { n }\).
  1. Write down the value of \(S _ { 2 }\) and show that \(S _ { 4 } = 2\).
  2. Find the values of \(S _ { 6 }\) and \(S _ { 8 }\).
CAIE FP1 2010 June Q7
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k } + \mu ( \mathbf { i } - \mathbf { j } - \mathbf { k } )$$ respectively.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Find the perpendicular distance from the point \(P\) whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 1 }\).
CAIE FP1 2010 June Q8
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 1 & - 1
- 4 & - 1 & 4
0 & - 1 & 5 \end{array} \right)$$ Given that one eigenvector of \(\mathbf { A }\) is \(\left( \begin{array} { r } 1
- 2
- 1 \end{array} \right)\), find the corresponding eigenvalue. Given also that another eigenvalue of \(\mathbf { A }\) is 4, find a corresponding eigenvector. Given further that \(\left( \begin{array} { r } 1
- 4
- 1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\), with corresponding eigenvalue 1 , find matrices \(\mathbf { P }\) and \(\mathbf { Q }\), together with a diagonal matrix \(\mathbf { D }\), such that \(\mathbf { A } ^ { 5 } = \mathbf { P D Q }\).
CAIE FP1 2010 June Q9
9
  1. Write down the five fifth roots of unity.
  2. Hence find all the roots of the equation $$z ^ { 5 } + 16 + ( 16 \sqrt { } 3 ) i = 0$$ giving answers in the form \(r \mathrm { e } ^ { \mathrm { i } q \pi }\), where \(r > 0\) and \(q\) is a rational number. Show these roots on an Argand diagram. Let \(w\) be a root of the equation in part (ii).
  3. Show that $$\sum _ { k = 0 } ^ { 4 } \left( \frac { w } { 2 } \right) ^ { k } = \frac { 3 + \mathrm { i } \sqrt { } 3 } { 2 - w }$$
  4. Identify the root for which \(| 2 - w |\) is least.
CAIE FP1 2010 June Q10
10 Find the set of values of \(a\) for which the system of equations $$\begin{aligned} x + 4 y + 12 z & = 5
2 x + a y + 12 z & = a - 1
3 x + 12 y + 2 a z & = 10 \end{aligned}$$ has a unique solution. Show that the system does not have any solution in the case \(a = 18\). Given that \(a = 8\), show that the number of solutions is infinite and find the solution for which \(x + y + z = 1\).
CAIE FP1 2010 June Q11 EITHER
The variables \(z\) and \(x\) are related by the differential equation $$3 z ^ { 2 } \frac { \mathrm {~d} ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 6 z ^ { 2 } \frac { \mathrm {~d} z } { \mathrm {~d} x } + 6 z \left( \frac { \mathrm {~d} z } { \mathrm {~d} x } \right) ^ { 2 } + 5 z ^ { 3 } = 5 x + 2$$ Use the substitution \(y = z ^ { 3 }\) to show that \(y\) and \(x\) are related by the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 5 x + 2$$ Given that \(z = 1\) and \(\frac { \mathrm { d } z } { \mathrm {~d} x } = - \frac { 2 } { 3 }\) when \(x = 0\), find \(z\) in terms of \(x\). Deduce that, for large positive values of \(x , z \approx x ^ { \frac { 1 } { 3 } }\).
CAIE FP1 2010 June Q11 OR
The curve \(C\) has equation $$y = \frac { x ( x + 1 ) } { ( x - 1 ) ^ { 2 } }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that there is exactly one point of intersection of \(C\) with the asymptotes and find its coordinates.
  3. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence
    (a) find the coordinates of any stationary points of \(C\),
    (b) state the set of values of \(x\) for which the gradient of \(C\) is negative.
  4. Draw a sketch of \(C\).
CAIE FP1 2010 June Q1
1 Given that 5 is an eigenvalue of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } 5 & - 3 & 0
1 & 2 & 1
- 1 & 3 & 4 \end{array} \right)$$ find a corresponding eigenvector. Hence find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 2 }\).
CAIE FP1 2010 June Q2
2 By considering the identity $$\cos [ ( 2 n - 1 ) \alpha ] - \cos [ ( 2 n + 1 ) \alpha ] \equiv 2 \sin \alpha \sin 2 n \alpha$$ show that if \(\alpha\) is not an integer multiple of \(\pi\) then $$\sum _ { n = 1 } ^ { N } \sin ( 2 n \alpha ) = \frac { 1 } { 2 } \cot \alpha - \frac { 1 } { 2 } \operatorname { cosec } \alpha \cos [ ( 2 N + 1 ) \alpha ]$$ Deduce that the infinite series $$\sum _ { n = 1 } ^ { \infty } \sin \left( \frac { 2 } { 3 } n \pi \right)$$ does not converge.
CAIE FP1 2010 June Q3
3 The sequence \(x _ { 1 } , x _ { 2 } , x _ { 3 } , \ldots\) is such that \(x _ { 1 } = 3\) and $$x _ { n + 1 } = \frac { 2 x _ { n } ^ { 2 } + 4 x _ { n } - 2 } { 2 x _ { n } + 3 }$$ for \(n = 1,2,3 , \ldots\). Prove by induction that \(x _ { n } > 2\) for all \(n\).
CAIE FP1 2010 June Q4
4 The parametric equations of a curve are $$x = \cos t + t \sin t , \quad y = \sin t - t \cos t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \frac { 1 } { 2 } \pi\) is rotated about the \(x\)-axis through one complete revolution. Find the area of the surface generated, leaving your result in terms of \(\pi\).
CAIE FP1 2010 June Q5
5 Use de Moivre's theorem to show that $$\sin 5 \theta = 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ Hence find all the roots of the equation $$32 x ^ { 5 } - 40 x ^ { 3 } + 10 x + 1 = 0$$ in the form \(\sin ( q \pi )\), where \(q\) is a positive rational number.
CAIE FP1 2010 June Q6
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } - 3 x - 7 } { x + 1 }$$
  1. Obtain the equations of the asymptotes of \(C\).
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } > 1\) at all points of \(C\).
  3. Draw a sketch of \(C\).
CAIE FP1 2010 June Q7
7 It is given that $$x = t ^ { 2 } \mathrm { e } ^ { - t ^ { 2 } } \quad \text { and } \quad y = t \mathrm { e } ^ { - t ^ { 2 } }$$
  1. Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 - 2 t ^ { 2 } } { 2 t - 2 t ^ { 3 } }$$
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(t\).
CAIE FP1 2010 June Q8
8 Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 10 \sin 3 x - 20 \cos 3 x$$ Show that, for large positive \(x\) and independently of the initial conditions, $$y \approx R \sin ( 3 x + \phi )$$ where the constants \(R\) and \(\phi\), such that \(R > 0\) and \(0 < \phi < 2 \pi\), are to be determined correct to 2 decimal places.
CAIE FP1 2010 June Q9
9 Let $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sin ^ { n } \theta \mathrm {~d} \theta$$ where \(n\) is a non-negative integer. Show that \(I _ { n + 2 } = \frac { n + 1 } { n + 2 } I _ { n }\). The region \(R\) of the \(x - y\) plane is bounded by the \(x\)-axis, the line \(x = \frac { \pi } { 2 m }\) and the curve whose equation is \(y = \sin ^ { 4 } m x\), where \(m > 0\). Find the \(y\)-coordinate of the centroid of \(R\).
CAIE FP1 2010 June Q10
10 The equation $$x ^ { 4 } + x ^ { 3 } + c x ^ { 2 } + 4 x - 2 = 0$$ where \(c\) is a constant, has roots \(\alpha , \beta , \gamma , \delta\).
  1. Use the substitution \(y = \frac { 1 } { x }\) to find an equation which has roots \(\frac { 1 } { \alpha } , \frac { 1 } { \beta } , \frac { 1 } { \gamma } , \frac { 1 } { \delta }\).
  2. Find, in terms of \(c\), the values of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 }\) and \(\frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } } + \frac { 1 } { \delta ^ { 2 } }\).
  3. Hence find $$\left( \alpha - \frac { 1 } { \alpha } \right) ^ { 2 } + \left( \beta - \frac { 1 } { \beta } \right) ^ { 2 } + \left( \gamma - \frac { 1 } { \gamma } \right) ^ { 2 } + \left( \delta - \frac { 1 } { \delta } \right) ^ { 2 }$$ in terms of \(c\).
  4. Deduce that when \(c = - 3\) the roots of the given equation are not all real.
CAIE FP1 2010 June Q11
11 The curve \(C\) has polar equation $$r = \frac { a } { 1 + \theta }$$ where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(r\) decreases as \(\theta\) increases.
  2. The point \(P\) of \(C\) is further from the initial line than any other point of \(C\). Show that, at \(P\), $$\tan \theta = 1 + \theta$$ and verify that this equation has a root between 1.1 and 1.2.
  3. Draw a sketch of \(C\).
  4. Find the area of the region bounded by the initial line, the line \(\theta = \frac { 1 } { 2 } \pi\) and \(C\), leaving your answer in terms of \(\pi\) and \(a\).
CAIE FP1 2010 June Q12 EITHER
The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } + \mathbf { j }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(- \mathbf { i } - \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + 2 \mathbf { k }\). The point \(P\) is on \(l _ { 1 }\) and the point \(Q\) is on \(l _ { 2 }\) and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
  1. Find the length of \(P Q\).
  2. Find the position vector of \(Q\).
  3. Show that the perpendicular distance from \(Q\) to the plane containing \(A B\) and the line \(l _ { 1 }\) is \(\sqrt { } 3\).