CAIE FP1 2010 June — Question 8

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicSecond order differential equations

8 Obtain the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 10 \sin 3 x - 20 \cos 3 x$$ Show that, for large positive \(x\) and independently of the initial conditions, $$y \approx R \sin ( 3 x + \phi )$$ where the constants \(R\) and \(\phi\), such that \(R > 0\) and \(0 < \phi < 2 \pi\), are to be determined correct to 2 decimal places.