CAIE FP1 2010 June — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicComplex numbers 2

5 Use de Moivre's theorem to show that $$\sin 5 \theta = 16 \sin ^ { 5 } \theta - 20 \sin ^ { 3 } \theta + 5 \sin \theta$$ Hence find all the roots of the equation $$32 x ^ { 5 } - 40 x ^ { 3 } + 10 x + 1 = 0$$ in the form \(\sin ( q \pi )\), where \(q\) is a positive rational number.