CAIE FP1 2010 June — Question 2

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicSequences and Series

2 By considering the identity $$\cos [ ( 2 n - 1 ) \alpha ] - \cos [ ( 2 n + 1 ) \alpha ] \equiv 2 \sin \alpha \sin 2 n \alpha$$ show that if \(\alpha\) is not an integer multiple of \(\pi\) then $$\sum _ { n = 1 } ^ { N } \sin ( 2 n \alpha ) = \frac { 1 } { 2 } \cot \alpha - \frac { 1 } { 2 } \operatorname { cosec } \alpha \cos [ ( 2 N + 1 ) \alpha ]$$ Deduce that the infinite series $$\sum _ { n = 1 } ^ { \infty } \sin \left( \frac { 2 } { 3 } n \pi \right)$$ does not converge.