| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2010 |
| Session | June |
| Topic | Sequences and Series |
2 By considering the identity
$$\cos [ ( 2 n - 1 ) \alpha ] - \cos [ ( 2 n + 1 ) \alpha ] \equiv 2 \sin \alpha \sin 2 n \alpha$$
show that if \(\alpha\) is not an integer multiple of \(\pi\) then
$$\sum _ { n = 1 } ^ { N } \sin ( 2 n \alpha ) = \frac { 1 } { 2 } \cot \alpha - \frac { 1 } { 2 } \operatorname { cosec } \alpha \cos [ ( 2 N + 1 ) \alpha ]$$
Deduce that the infinite series
$$\sum _ { n = 1 } ^ { \infty } \sin \left( \frac { 2 } { 3 } n \pi \right)$$
does not converge.