CAIE FP1 2010 June — Question 7

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicVectors: Cross Product & Distances

7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = 4 \mathbf { i } - 2 \mathbf { j } + \lambda ( 2 \mathbf { i } + \mathbf { j } - 4 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 4 \mathbf { i } - 5 \mathbf { j } + 2 \mathbf { k } + \mu ( \mathbf { i } - \mathbf { j } - \mathbf { k } )$$ respectively.
  1. Show that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  2. Find the perpendicular distance from the point \(P\) whose position vector is \(3 \mathbf { i } - 5 \mathbf { j } + 6 \mathbf { k }\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 1 }\).