The line \(l _ { 1 }\) passes through the point \(A\) whose position vector is \(3 \mathbf { i } + \mathbf { j } + 2 \mathbf { k }\) and is parallel to the vector \(\mathbf { i } + \mathbf { j }\). The line \(l _ { 2 }\) passes through the point \(B\) whose position vector is \(- \mathbf { i } - \mathbf { k }\) and is parallel to the vector \(\mathbf { j } + 2 \mathbf { k }\). The point \(P\) is on \(l _ { 1 }\) and the point \(Q\) is on \(l _ { 2 }\) and \(P Q\) is perpendicular to both \(l _ { 1 }\) and \(l _ { 2 }\).
- Find the length of \(P Q\).
- Find the position vector of \(Q\).
- Show that the perpendicular distance from \(Q\) to the plane containing \(A B\) and the line \(l _ { 1 }\) is \(\sqrt { } 3\).