CAIE FP1 2010 June — Question 11

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2010
SessionJune
TopicPolar coordinates

11 The curve \(C\) has polar equation $$r = \frac { a } { 1 + \theta }$$ where \(a\) is a positive constant and \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(r\) decreases as \(\theta\) increases.
  2. The point \(P\) of \(C\) is further from the initial line than any other point of \(C\). Show that, at \(P\), $$\tan \theta = 1 + \theta$$ and verify that this equation has a root between 1.1 and 1.2.
  3. Draw a sketch of \(C\).
  4. Find the area of the region bounded by the initial line, the line \(\theta = \frac { 1 } { 2 } \pi\) and \(C\), leaving your answer in terms of \(\pi\) and \(a\).