Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2007 November Q2
2 Express $$\frac { 2 n + 3 } { n ( n + 1 ) }$$ in partial fractions and hence use the method of differences to find $$\sum _ { n = 1 } ^ { N } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$ in terms of \(N\). Deduce the value of $$\sum _ { n = 1 } ^ { \infty } \frac { 2 n + 3 } { n ( n + 1 ) } \left( \frac { 1 } { 3 } \right) ^ { n + 1 }$$
CAIE FP1 2007 November Q3
3 Prove by induction that, for all \(n \geqslant 1\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x ^ { 2 } } \right) = \mathrm { P } _ { n } ( x ) \mathrm { e } ^ { x ^ { 2 } } ,$$ where \(\mathrm { P } _ { n } ( x )\) is a polynomial in \(x\) of degree \(n\) with the coefficient of \(x ^ { n }\) equal to \(2 ^ { n }\).
CAIE FP1 2007 November Q4
4 The roots of the equation $$x ^ { 3 } - 8 x ^ { 2 } + 5 = 0$$ are \(\alpha , \beta , \gamma\). Show that $$\alpha ^ { 2 } = \frac { 5 } { \beta + \gamma } .$$ It is given that the roots are all real. Without reference to a graph, show that one of the roots is negative and the other two roots are positive.
CAIE FP1 2007 November Q5
5 The positive variables \(x\) and \(y\) are related by $$y = x ^ { 2 } + 2 \ln ( x y )$$ Find the values of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when both \(x\) and \(y\) are equal to 1 .
CAIE FP1 2007 November Q6
6 The points \(A , B\) and \(C\) have position vectors \(2 \mathbf { i } , 3 \mathbf { j }\) and \(4 \mathbf { k }\) respectively. Find a vector which is perpendicular to the plane \(\Pi _ { 1 }\) containing \(A , B\) and \(C\). The plane \(\Pi _ { 2 }\) has equation $$\mathbf { r } = \mathbf { i } + 4 \mathbf { j } + 2 \mathbf { k } + \lambda ( \mathbf { i } - \mathbf { j } ) + \mu ( \mathbf { j } - \mathbf { k } ) .$$ Find the acute angle between the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2007 November Q7
7 The curve \(C\) has polar equation $$r = \theta \sin \theta ,$$ where \(0 \leqslant \theta \leqslant \pi\). Draw a sketch of \(C\). Find the area of the region enclosed by \(C\), leaving your answer in terms of \(\pi\).
CAIE FP1 2007 November Q8
8 Let \(I _ { n } = \int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n } \mathrm {~d} x\).
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ \left( \mathrm { e } ^ { x } - \mathrm { e } ^ { - x } \right) \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n - 1 } \right] = n \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n } - 4 ( n - 1 ) \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { n - 2 } .$$
  2. Hence show that $$n I _ { n } = 4 ( n - 1 ) I _ { n - 2 } + \frac { 3 } { 2 } \left( \frac { 5 } { 2 } \right) ^ { n - 1 } .$$
  3. Use the result in part (ii) to find the \(y\)-coordinate of the centroid of the region bounded by the axes, the line \(x = \ln 2\) and the curve $$y = \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 2 } .$$ Give your answer correct to 3 decimal places.
CAIE FP1 2007 November Q9
9 Write down, in any form, all the roots of the equation \(z ^ { 5 } - 1 = 0\). Hence find all the roots of the equation $$( w - 1 ) ^ { 4 } + ( w - 1 ) ^ { 3 } + ( w - 1 ) ^ { 2 } + w = 0$$ and deduce that none of them is real. Find the arguments of the two roots which have the smaller modulus.
CAIE FP1 2007 November Q10
10 The vectors \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 } , \mathbf { b } _ { 4 }\) are defined as follows: $$\mathbf { b } _ { 1 } = \left( \begin{array} { c } 1
0
0
0 \end{array} \right) , \quad \mathbf { b } _ { 2 } = \left( \begin{array} { c } 1
1
0
0 \end{array} \right) , \quad \mathbf { b } _ { 3 } = \left( \begin{array} { c } 1
1
1
0 \end{array} \right) , \quad \mathbf { b } _ { 4 } = \left( \begin{array} { c } 1
1
1
1 \end{array} \right) .$$ The linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 }\) is denoted by \(V _ { 1 }\) and the linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 4 }\) is denoted by \(V _ { 2 }\).
  1. Give a reason why \(V _ { 1 } \cup V _ { 2 }\) is not a linear space.
  2. State the dimension of the linear space \(V _ { 1 } \cap V _ { 2 }\) and write down a basis. Consider now the set \(V _ { 3 }\) of all vectors of the form \(q \mathbf { b } _ { 2 } + r \mathbf { b } _ { 3 } + s \mathbf { b } _ { 4 }\), where \(q , r , s\) are real numbers. Show that \(V _ { 3 }\) is a linear space, and show also that it has dimension 3 . Determine whether each of the vectors $$\left( \begin{array} { l } 4
    4
    2
    5 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { l } 5
    4
    2
    5 \end{array} \right)$$ belongs to \(V _ { 3 }\) and justify your conclusions.
CAIE FP1 2007 November Q11
11 Find the eigenvalues of the matrix $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 1 & 4
1 & 1 & - 1
2 & 1 & 1 \end{array} \right)$$ and corresponding eigenvectors. The matrix \(\mathbf { B }\) is defined by $$\mathbf { B } = \mathbf { A } - k \mathbf { I } ,$$ where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(k\) is a real number. Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { B } ^ { 3 } = \mathbf { P D } \mathbf { P } ^ { - 1 } .$$
CAIE FP1 2007 November Q12 EITHER
The curve \(C\) has equation $$y = \frac { a x ^ { 2 } + b x + c } { x + 4 }$$ where \(a\), \(b\) and \(c\) are constants. It is given that \(y = 2 x - 5\) is an asymptote of \(C\).
  1. Find the values of \(a\) and \(b\).
  2. Given also that \(C\) has a turning point at \(x = - 1\), find the value of \(c\).
  3. Find the set of values of \(y\) for which there are no points on \(C\).
  4. Draw a sketch of the curve with equation $$y = \frac { 2 ( x - 7 ) ^ { 2 } + 3 ( x - 7 ) - 2 } { x - 3 }$$ [You should state the equations of the asymptotes and the coordinates of the turning points.]
CAIE FP1 2007 November Q12 OR
Show that the substitution \(y = \frac { 1 } { w }\) reduces the differential equation $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 2 } = \left( 5 x ^ { 2 } + 4 x + 2 \right) y ^ { 3 }$$ to $$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + 5 w = - 5 x ^ { 2 } - 4 x - 2$$ Find the general solution for \(w\) in terms of \(x\). Find a function f such that \(\lim _ { x \rightarrow \infty } \left( \frac { y } { \mathrm { f } ( x ) } \right) = 1\).
CAIE FP1 2011 November Q1
1 The equation \(x ^ { 3 } + p x + q = 0\) has a repeated root. Prove that \(4 p ^ { 3 } + 27 q ^ { 2 } = 0\).
CAIE FP1 2011 November Q2
2 The position vectors of points \(A , B , C\), relative to the origin \(O\), are \(\mathbf { a } , \mathbf { b } , \mathbf { c }\), where $$\mathbf { a } = 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \quad \mathbf { b } = 4 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } , \quad \mathbf { c } = 3 \mathbf { i } - \mathbf { j } - \mathbf { k }$$ Find \(\mathbf { a } \times \mathbf { b }\) and deduce the area of the triangle \(O A B\). Hence find the volume of the tetrahedron \(O A B C\), given that the volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.
CAIE FP1 2011 November Q3
3 Prove by mathematical induction that, for all positive integers \(n\), $$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x } \sin x \right) = 2 ^ { \frac { 1 } { 2 } n } \mathrm { e } ^ { x } \sin \left( x + \frac { 1 } { 4 } n \pi \right)$$
CAIE FP1 2011 November Q4
4 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 3 & 4 & 2 & 5
6 & 7 & 5 & 8
9 & 9 & 9 & 9
15 & 16 & 14 & 17 \end{array} \right)$$ Find
  1. the rank of \(\mathbf { M }\) and a basis for the range space of T ,
  2. a basis for the null space of T .
CAIE FP1 2011 November Q5
5 The point \(P ( 2,1 )\) lies on the curve with equation $$x ^ { 3 } - 2 y ^ { 3 } = 3 x y$$ Find
  1. the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(P\),
  2. the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at \(P\).
CAIE FP1 2011 November Q6
6 Let \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\). Show that, for \(n \geqslant 1\), $$( 3 + 2 n ) I _ { n } = 2 n I _ { n - 1 }$$ Hence find the exact value of \(I _ { 3 }\).
CAIE FP1 2011 November Q7
7 The curve \(C\) has equation \(y = \frac { x ^ { 2 } + p x + 1 } { x - 2 }\), where \(p\) is a constant. Given that \(C\) has two asymptotes, find the equation of each asymptote. Find the set of values of \(p\) for which \(C\) has two distinct turning points. Sketch \(C\) in the case \(p = - 1\). Your sketch should indicate the coordinates of any intersections with the axes, but need not show the coordinates of any turning points.
CAIE FP1 2011 November Q8
8 The vector \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A }\), with corresponding eigenvalue \(\lambda\), and is also an eigenvector of the matrix \(\mathbf { B }\), with corresponding eigenvalue \(\mu\). Show that \(\mathbf { e }\) is an eigenvector of the matrix \(\mathbf { A B }\) with corresponding eigenvalue \(\lambda \mu\). State the eigenvalues of the matrix \(\mathbf { C }\), where $$\mathbf { C } = \left( \begin{array} { r r r } - 1 & - 1 & 3
0 & 1 & 2
0 & 0 & 2 \end{array} \right) ,$$ and find corresponding eigenvectors. Show that \(\left( \begin{array} { l } 1
6
3 \end{array} \right)\) is an eigenvector of the matrix \(\mathbf { D }\), where $$\mathbf { D } = \left( \begin{array} { r r r } 1 & - 1 & 1
- 6 & - 3 & 4
- 9 & - 3 & 7 \end{array} \right) ,$$ and state the corresponding eigenvalue. Hence state an eigenvector of the matrix CD and give the corresponding eigenvalue.
CAIE FP1 2011 November Q9
9 The curve \(C\) has equation \(y = \frac { 1 } { 2 } \left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right)\) for \(0 \leqslant x \leqslant \ln 5\). Find
  1. the mean value of \(y\) with respect to \(x\) over the interval \(0 \leqslant x \leqslant \ln 5\),
  2. the arc length of \(C\),
  3. the surface area generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE FP1 2011 November Q10
10 The curve \(C\) has polar equation \(r = 3 + 2 \cos \theta\), for \(- \pi < \theta \leqslant \pi\). The straight line \(l\) has polar equation \(r \cos \theta = 2\). Sketch both \(C\) and \(l\) on a single diagram. Find the polar coordinates of the points of intersection of \(C\) and \(l\). The region \(R\) is enclosed by \(C\) and \(l\), and contains the pole. Find the area of \(R\).
CAIE FP1 2011 November Q11 EITHER
Let \(\omega = \cos \frac { 1 } { 5 } \pi + \mathrm { i } \sin \frac { 1 } { 5 } \pi\). Show that \(\omega ^ { 5 } + 1 = 0\) and deduce that $$\omega ^ { 4 } - \omega ^ { 3 } + \omega ^ { 2 } - \omega = - 1$$ Show further that $$\omega - \omega ^ { 4 } = 2 \cos \frac { 1 } { 5 } \pi \quad \text { and } \quad \omega ^ { 3 } - \omega ^ { 2 } = 2 \cos \frac { 3 } { 5 } \pi$$ Hence find the values of $$\cos \frac { 1 } { 5 } \pi + \cos \frac { 3 } { 5 } \pi \quad \text { and } \quad \cos \frac { 1 } { 5 } \pi \cos \frac { 3 } { 5 } \pi$$ Find a quadratic equation having roots \(\cos \frac { 1 } { 5 } \pi\) and \(\cos \frac { 3 } { 5 } \pi\) and deduce the exact value of \(\cos \frac { 1 } { 5 } \pi\).
CAIE FP1 2011 November Q11 OR
Given that $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x ( 1 + x ) \frac { \mathrm { d } y } { \mathrm {~d} x } + 2 \left( 1 + 4 x + 2 x ^ { 2 } \right) y = 8 x ^ { 2 }$$ and that \(x ^ { 2 } y = z\), show that $$\frac { \mathrm { d } ^ { 2 } z } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} z } { \mathrm {~d} x } + 4 z = 8 x ^ { 2 }$$ Find the general solution for \(y\) in terms of \(x\). Describe the behaviour of \(y\) as \(x \rightarrow \infty\).
CAIE FP1 2012 November Q10
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r } 1 & 4 & - 16
0 & 2 & 3
0 & 0 & 3 \end{array} \right)$$ Find corresponding eigenvectors. Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { A } ^ { n } = \mathbf { P D } \mathbf { P } ^ { - 1 }$$ Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\). Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).