| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2012 |
| Session | November |
| Topic | Invariant lines and eigenvalues and vectors |
10 Write down the eigenvalues of the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r }
1 & 4 & - 16
0 & 2 & 3
0 & 0 & 3
\end{array} \right)$$
Find corresponding eigenvectors.
Let \(n\) be a positive integer. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that
$$\mathbf { A } ^ { n } = \mathbf { P D } \mathbf { P } ^ { - 1 }$$
Find \(\mathbf { P } ^ { - 1 }\) and \(\mathbf { A } ^ { n }\).
Hence find \(\lim _ { n \rightarrow \infty } \left( 3 ^ { - n } \mathbf { A } ^ { n } \right)\).