| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2007 |
| Session | November |
| Topic | Invariant lines and eigenvalues and vectors |
11 Find the eigenvalues of the matrix
$$\mathbf { A } = \left( \begin{array} { r r r }
- 1 & 1 & 4
1 & 1 & - 1
2 & 1 & 1
\end{array} \right)$$
and corresponding eigenvectors.
The matrix \(\mathbf { B }\) is defined by
$$\mathbf { B } = \mathbf { A } - k \mathbf { I } ,$$
where \(\mathbf { I }\) is the \(3 \times 3\) identity matrix and \(k\) is a real number. Find a non-singular matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that
$$\mathbf { B } ^ { 3 } = \mathbf { P D } \mathbf { P } ^ { - 1 } .$$