| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2007 |
| Session | November |
| Topic | Second order differential equations |
Show that the substitution \(y = \frac { 1 } { w }\) reduces the differential equation
$$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 y \frac { \mathrm {~d} y } { \mathrm {~d} x } - 2 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } - 5 y ^ { 2 } = \left( 5 x ^ { 2 } + 4 x + 2 \right) y ^ { 3 }$$
to
$$\frac { \mathrm { d } ^ { 2 } w } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} w } { \mathrm {~d} x } + 5 w = - 5 x ^ { 2 } - 4 x - 2$$
Find the general solution for \(w\) in terms of \(x\).
Find a function f such that \(\lim _ { x \rightarrow \infty } \left( \frac { y } { \mathrm { f } ( x ) } \right) = 1\).