CAIE FP1 2007 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2007
SessionNovember
TopicGroups

10 The vectors \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 } , \mathbf { b } _ { 4 }\) are defined as follows: $$\mathbf { b } _ { 1 } = \left( \begin{array} { c } 1
0
0
0 \end{array} \right) , \quad \mathbf { b } _ { 2 } = \left( \begin{array} { c } 1
1
0
0 \end{array} \right) , \quad \mathbf { b } _ { 3 } = \left( \begin{array} { c } 1
1
1
0 \end{array} \right) , \quad \mathbf { b } _ { 4 } = \left( \begin{array} { c } 1
1
1
1 \end{array} \right) .$$ The linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 3 }\) is denoted by \(V _ { 1 }\) and the linear space spanned by \(\mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } , \mathbf { b } _ { 4 }\) is denoted by \(V _ { 2 }\).
  1. Give a reason why \(V _ { 1 } \cup V _ { 2 }\) is not a linear space.
  2. State the dimension of the linear space \(V _ { 1 } \cap V _ { 2 }\) and write down a basis. Consider now the set \(V _ { 3 }\) of all vectors of the form \(q \mathbf { b } _ { 2 } + r \mathbf { b } _ { 3 } + s \mathbf { b } _ { 4 }\), where \(q , r , s\) are real numbers. Show that \(V _ { 3 }\) is a linear space, and show also that it has dimension 3 . Determine whether each of the vectors $$\left( \begin{array} { l } 4
    4
    2
    5 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { l } 5
    4
    2
    5 \end{array} \right)$$ belongs to \(V _ { 3 }\) and justify your conclusions.