| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2011 |
| Session | November |
| Topic | Vectors: Cross Product & Distances |
2 The position vectors of points \(A , B , C\), relative to the origin \(O\), are \(\mathbf { a } , \mathbf { b } , \mathbf { c }\), where
$$\mathbf { a } = 3 \mathbf { i } + 2 \mathbf { j } - \mathbf { k } , \quad \mathbf { b } = 4 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } , \quad \mathbf { c } = 3 \mathbf { i } - \mathbf { j } - \mathbf { k }$$
Find \(\mathbf { a } \times \mathbf { b }\) and deduce the area of the triangle \(O A B\).
Hence find the volume of the tetrahedron \(O A B C\), given that the volume of a tetrahedron is \(\frac { 1 } { 3 } \times\) area of base × perpendicular height.