| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2007 |
| Session | November |
| Topic | Proof by induction |
3 Prove by induction that, for all \(n \geqslant 1\),
$$\frac { \mathrm { d } ^ { n } } { \mathrm {~d} x ^ { n } } \left( \mathrm { e } ^ { x ^ { 2 } } \right) = \mathrm { P } _ { n } ( x ) \mathrm { e } ^ { x ^ { 2 } } ,$$
where \(\mathrm { P } _ { n } ( x )\) is a polynomial in \(x\) of degree \(n\) with the coefficient of \(x ^ { n }\) equal to \(2 ^ { n }\).