Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2005 November Q1
1 Write down the fifth roots of unity. Hence, or otherwise, find all the roots of the equation $$z ^ { 5 } = - 16 + ( 16 \sqrt { } 3 ) i$$ giving each root in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\).
CAIE FP1 2005 November Q2
2 The sequence \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } = 1\) and $$u _ { n + 1 } = - 1 + \sqrt { } \left( u _ { n } + 7 \right)$$
  1. Prove by induction that \(u _ { n } < 2\) for all \(n \geqslant 1\).
  2. Show that if \(u _ { n } = 2 - \varepsilon\), where \(\varepsilon\) is small, then $$u _ { n + 1 } \approx 2 - \frac { 1 } { 6 } \varepsilon$$
CAIE FP1 2005 November Q3
3 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { x + \lambda }$$ where \(\lambda\) is a non-zero constant. Obtain the equations of the asymptotes of \(C\). In separate diagrams, sketch \(C\) for the cases where
  1. \(\lambda > 0\),
  2. \(\lambda < 0\).
CAIE FP1 2005 November Q4
4 Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 24 \mathrm { e } ^ { 2 x }$$ given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 9\) when \(x = 0\).
CAIE FP1 2005 November Q5
5 In the equation $$x ^ { 3 } + a x ^ { 2 } + b x + c = 0$$ the coefficients \(a , b\) and \(c\) are real. It is given that all the roots are real and greater than 1 .
  1. Prove that \(a < - 3\).
  2. By considering the sum of the squares of the roots, prove that \(a ^ { 2 } > 2 b + 3\).
  3. By considering the sum of the cubes of the roots, prove that \(a ^ { 3 } < - 9 b - 3 c - 3\).
CAIE FP1 2005 November Q6
6 Let $$I _ { n } = \int _ { 0 } ^ { 1 } \left( 1 + x ^ { 2 } \right) ^ { - n } \mathrm {~d} x$$ where \(n \geqslant 1\). By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x \left( 1 + x ^ { 2 } \right) ^ { - n } \right)\), or otherwise, prove that $$2 n I _ { n + 1 } = ( 2 n - 1 ) I _ { n } + 2 ^ { - n }$$ Deduce that \(I _ { 3 } = \frac { 3 } { 32 } \pi + \frac { 1 } { 4 }\).
\(7 \quad\) Write down an expression in terms of \(z\) and \(N\) for the sum of the series $$\sum _ { n = 1 } ^ { N } 2 ^ { - n } z ^ { n }$$ Use de Moivre's theorem to deduce that $$\sum _ { n = 1 } ^ { 10 } 2 ^ { - n } \sin \left( \frac { 1 } { 10 } n \pi \right) = \frac { 1025 \sin \left( \frac { 1 } { 10 } \pi \right) } { 2560 - 2048 \cos \left( \frac { 1 } { 10 } \pi \right) }$$
CAIE FP1 2005 November Q8
8 Find the coordinates of the centroid of the finite region bounded by the \(x\)-axis and the curve whose equation is $$y = x ^ { 2 } ( 1 - x )$$ Deduce the coordinates of the centroid of the finite region bounded by the \(x\)-axis and the curve whose equation is $$y = x ( 1 - x ) ^ { 2 }$$
CAIE FP1 2005 November Q9
9 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) have vector equations $$\mathbf { r } = \lambda _ { 1 } ( \mathbf { i } + \mathbf { j } - \mathbf { k } ) + \mu _ { 1 } ( 2 \mathbf { i } - \mathbf { j } + \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = \lambda _ { 2 } ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } ) + \mu _ { 2 } ( 3 \mathbf { i } + \mathbf { j } - \mathbf { k } )$$ respectively. The line \(l\) passes through the point with position vector \(4 \mathbf { i } + 5 \mathbf { j } + 6 \mathbf { k }\) and is parallel to both \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\). Find a vector equation for \(l\). Find also the shortest distance between \(l\) and the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
CAIE FP1 2005 November Q10
10 It is given that the eigenvalues of the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r } 4 & 1 & - 1
- 4 & - 1 & 4
0 & - 1 & 5 \end{array} \right)$$ are \(1,3,4\). Find a set of corresponding eigenvectors. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that $$\mathbf { M } ^ { n } = \mathbf { P } \mathbf { D } \mathbf { P } ^ { - 1 }$$ where \(n\) is a positive integer. Find \(\mathbf { P } ^ { - 1 }\) and deduce that $$\lim _ { n \rightarrow \infty } 4 ^ { - n } \mathbf { M } ^ { n } = \left( \begin{array} { r r r } - \frac { 1 } { 3 } & 0 & - \frac { 1 } { 3 }
\frac { 4 } { 3 } & 0 & \frac { 4 } { 3 }
\frac { 4 } { 3 } & 0 & \frac { 4 } { 3 } \end{array} \right)$$
CAIE FP1 2005 November Q11
11 Find the rank of the matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { r r r r } 1 & 1 & 2 & 3
4 & 3 & 5 & 16
6 & 6 & 13 & 13
14 & 12 & 23 & 45 \end{array} \right)$$ Find vectors \(\mathbf { x } _ { 0 }\) and \(\mathbf { e }\) such that any solution of the equation $$\mathbf { A x } = \left( \begin{array} { r } 0
2
- 1
3 \end{array} \right)$$ can be expressed in the form \(\mathbf { x } _ { 0 } + \lambda \mathbf { e }\), where \(\lambda \in \mathbb { R }\). Hence show that there is no vector which satisfies (*) and has all its elements positive.
CAIE FP1 2005 November Q12 EITHER
Show that \(\left( n + \frac { 1 } { 2 } \right) ^ { 3 } - \left( n - \frac { 1 } { 2 } \right) ^ { 3 } \equiv 3 n ^ { 2 } + \frac { 1 } { 4 }\). Use this result to prove that \(\sum _ { n = 1 } ^ { N } n ^ { 2 } = \frac { 1 } { 6 } N ( N + 1 ) ( 2 N + 1 )\). The sums \(S , T\) and \(U\) are defined as follows: $$\begin{aligned} & S = 1 ^ { 2 } + 2 ^ { 2 } + 3 ^ { 2 } + 4 ^ { 2 } + \ldots + ( 2 N ) ^ { 2 } + ( 2 N + 1 ) ^ { 2 } ,
& T = 1 ^ { 2 } + 3 ^ { 2 } + 5 ^ { 2 } + 7 ^ { 2 } + \ldots + ( 2 N - 1 ) ^ { 2 } + ( 2 N + 1 ) ^ { 2 } ,
& U = 1 ^ { 2 } - 2 ^ { 2 } + 3 ^ { 2 } - 4 ^ { 2 } + \ldots - ( 2 N ) ^ { 2 } + ( 2 N + 1 ) ^ { 2 } . \end{aligned}$$ Find and simplify expressions in terms of \(N\) for each of \(S , T\) and \(U\). Hence
  1. describe the behaviour of \(\frac { S } { T }\) as \(N \rightarrow \infty\),
  2. prove that if \(\frac { S } { U }\) is an integer then \(\frac { T } { U }\) is an integer.
CAIE FP1 2005 November Q12 OR
The curves \(C _ { 1 }\) and \(C _ { 2 }\) have polar equations $$r = 4 \cos \theta \quad \text { and } \quad r = 1 + \cos \theta$$ respectively, where \(- \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Show that \(C _ { 1 }\) and \(C _ { 2 }\) meet at the points \(A \left( \frac { 4 } { 3 } , \alpha \right)\) and \(B \left( \frac { 4 } { 3 } , - \alpha \right)\), where \(\alpha\) is the acute angle such that \(\cos \alpha = \frac { 1 } { 3 }\).
  2. In a single diagram, draw sketch graphs of \(C _ { 1 }\) and \(C _ { 2 }\).
  3. Show that the area of the region bounded by the arcs \(O A\) and \(O B\) of \(C _ { 1 }\), and the \(\operatorname { arc } A B\) of \(C _ { 2 }\), is $$4 \pi - \frac { 1 } { 3 } \sqrt { } 2 - \frac { 13 } { 2 } \alpha .$$
CAIE FP1 2006 November Q1
1 It is given that $$\mathbf { A } = \left( \begin{array} { r r r } 1 & - 1 & - 2
0 & 2 & 1
0 & 0 & - 3 \end{array} \right)$$ Write down the eigenvalues of \(\mathbf { A }\) and find corresponding eigenvectors.
CAIE FP1 2006 November Q2
2 The integral \(I _ { n }\), where \(n\) is a non-negative integer, is defined by $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \mathrm { e } ^ { - x ^ { 3 } } \mathrm {~d} x$$ By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( x ^ { n + 1 } \mathrm { e } ^ { - x ^ { 3 } } \right)\) or otherwise, show that $$3 I _ { n + 3 } = ( n + 1 ) I _ { n } - \mathrm { e } ^ { - 1 }$$ Hence find \(I _ { 6 }\) in terms of e and \(I _ { 0 }\).
CAIE FP1 2006 November Q3
3 Verify that if $$v _ { n } = n ( n + 1 ) ( n + 2 ) \ldots ( n + m )$$ then $$v _ { n + 1 } - v _ { n } = ( m + 1 ) ( n + 1 ) ( n + 2 ) \ldots ( n + m ) .$$ Given now that $$u _ { n } = ( n + 1 ) ( n + 2 ) \ldots ( n + m ) ,$$ find \(\sum _ { n = 1 } ^ { N } u _ { n }\) in terms of \(m\) and \(N\).
CAIE FP1 2006 November Q4
4 Prove by mathematical induction that, for all positive integers \(n , 10 ^ { 3 n } + 13 ^ { n + 1 }\) is divisible by 7 .
CAIE FP1 2006 November Q5
5 Show that if \(a \neq 3\) then the system of equations $$\begin{aligned} & 2 x + 3 y + 4 z = - 5
& 4 x + 5 y - z = 5 a + 15
& 6 x + 8 y + a z = b - 2 a + 21 \end{aligned}$$ has a unique solution. Given that \(a = 3\), find the value of \(b\) for which the equations are consistent.
CAIE FP1 2006 November Q6
6 The roots of the equation $$x ^ { 3 } + x + 1 = 0$$ are \(\alpha , \beta , \gamma\). Show that the equation whose roots are $$\frac { 4 \alpha + 1 } { \alpha + 1 } , \quad \frac { 4 \beta + 1 } { \beta + 1 } , \quad \frac { 4 \gamma + 1 } { \gamma + 1 }$$ is of the form $$y ^ { 3 } + p y + q = 0$$ where the numbers \(p\) and \(q\) are to be determined. Hence find the value of $$\left( \frac { 4 \alpha + 1 } { \alpha + 1 } \right) ^ { n } + \left( \frac { 4 \beta + 1 } { \beta + 1 } \right) ^ { n } + \left( \frac { 4 \gamma + 1 } { \gamma + 1 } \right) ^ { n }$$ for \(n = 2\) and for \(n = 3\).
CAIE FP1 2006 November Q7
7 The curve \(C\) has equation $$r = 10 \ln ( 1 + \theta )$$ where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\). Use the substitution \(w = \ln ( 1 + \theta )\) to show that the area of the sector bounded by the line \(\theta = \frac { 1 } { 2 } \pi\) and the arc of \(C\) joining the origin to the point where \(\theta = \frac { 1 } { 2 } \pi\) is $$50 \left( b ^ { 2 } - 2 b + 2 \right) \mathrm { e } ^ { b } - 100$$ where \(b = \ln \left( 1 + \frac { 1 } { 2 } \pi \right)\).
CAIE FP1 2006 November Q8
8 Given that $$2 y ^ { 3 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 12 y ^ { 3 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y ^ { 2 } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 17 y ^ { 4 } = 13 \mathrm { e } ^ { - 4 x }$$ and that \(v = y ^ { 4 }\), show that $$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 34 v = 26 \mathrm { e } ^ { - 4 x }$$ Hence find the general solution for \(y\) in terms of \(x\).
CAIE FP1 2006 November Q9
9 With \(O\) as origin, the points \(A , B , C\) have position vectors $$\mathbf { i } , \quad \mathbf { i } + \mathbf { j } , \quad \mathbf { i } + \mathbf { j } + 2 \mathbf { k }$$ respectively. Find a vector equation of the common perpendicular of the lines \(A B\) and \(O C\). Show that the shortest distance between the lines \(A B\) and \(O C\) is \(\frac { 2 } { 5 } \sqrt { } 5\). Find, in the form \(a x + b y + c z = d\), an equation for the plane containing \(A B\) and the common perpendicular of the lines \(A B\) and \(O C\).
CAIE FP1 2006 November Q10
10 The curve \(C\) has equation $$y = x ^ { 2 } + \lambda \sin ( x + y ) ,$$ where \(\lambda\) is a constant, and passes through the point \(A \left( \frac { 1 } { 4 } \pi , \frac { 1 } { 4 } \pi \right)\). Show that \(C\) has no tangent which is parallel to the \(y\)-axis. Show that, at \(A\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 - \frac { 1 } { 64 } \pi ( 4 - \pi ) ( \pi + 2 ) ^ { 2 }$$
CAIE FP1 2006 November Q11
11 Prove de Moivre's theorem for a positive integral exponent: $$\text { for all positive integers } n , \quad ( \cos \theta + \mathrm { i } \sin \theta ) ^ { n } = \cos n \theta + \mathrm { i } \sin n \theta \text {. }$$ Use de Moivre's theorem to show that $$\cos 7 \theta = 64 \cos ^ { 7 } \theta - 112 \cos ^ { 5 } \theta + 56 \cos ^ { 3 } \theta - 7 \cos \theta$$ Hence obtain the roots of the equation $$128 x ^ { 7 } - 224 x ^ { 5 } + 112 x ^ { 3 } - 14 x + 1 = 0$$ in the form \(\cos q \pi\), where \(q\) is a rational number.
CAIE FP1 2006 November Q12 EITHER
The curve \(C\) has equation $$y = \frac { x ^ { 2 } + q x + 1 } { 2 x + 3 } ,$$ where \(q\) is a positive constant.
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the value of \(q\) for which the \(x\)-axis is a tangent to \(C\), and sketch \(C\) in this case.
  3. Sketch \(C\) for the case \(q = 3\), giving the exact coordinates of the points of intersection of \(C\) with the \(x\)-axis.
  4. It is given that, for all values of the constant \(\lambda\), the line $$y = \lambda x + \frac { 3 } { 2 } \lambda + \frac { 1 } { 2 } ( q - 3 )$$ passes through the point of intersection of the asymptotes of \(C\). Use this result, with the diagrams you have drawn, to show that if \(\lambda < \frac { 1 } { 2 }\) then the equation $$\frac { x ^ { 2 } + q x + 1 } { 2 x + 3 } = \lambda x + \frac { 3 } { 2 } \lambda + \frac { 1 } { 2 } ( q - 3 )$$ has no real solution if \(q\) has the value found in part (ii), but has 2 real distinct solutions if \(q = 3\).
CAIE FP1 2006 November Q12 OR
The curve \(C\) has equation $$y = x ^ { \frac { 1 } { 2 } } - \frac { 1 } { 3 } x ^ { \frac { 3 } { 2 } } + \lambda ,$$ where \(\lambda > 0\) and \(0 \leqslant x \leqslant 3\). The length of \(C\) is denoted by \(s\). Prove that \(s = 2 \sqrt { } 3\). The area of the surface generated when \(C\) is rotated through one revolution about the \(x\)-axis is denoted by \(S\). Find \(S\) in terms of \(\lambda\). The \(y\)-coordinate of the centroid of the region bounded by \(C\), the axes and the line \(x = 3\) is denoted by h. Given that \(\int _ { 0 } ^ { 3 } y ^ { 2 } \mathrm {~d} x = \frac { 3 } { 4 } + \frac { 8 \sqrt { } 3 } { 5 } \lambda + 3 \lambda ^ { 2 }\), show that $$\lim _ { \lambda \rightarrow \infty } \frac { S } { h s } = 4 \pi$$