CAIE FP1 2005 November — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionNovember
TopicRoots of polynomials

5 In the equation $$x ^ { 3 } + a x ^ { 2 } + b x + c = 0$$ the coefficients \(a , b\) and \(c\) are real. It is given that all the roots are real and greater than 1 .
  1. Prove that \(a < - 3\).
  2. By considering the sum of the squares of the roots, prove that \(a ^ { 2 } > 2 b + 3\).
  3. By considering the sum of the cubes of the roots, prove that \(a ^ { 3 } < - 9 b - 3 c - 3\).