| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2006 |
| Session | November |
| Topic | Polar coordinates |
7 The curve \(C\) has equation
$$r = 10 \ln ( 1 + \theta )$$
where \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\). Draw a sketch of \(C\).
Use the substitution \(w = \ln ( 1 + \theta )\) to show that the area of the sector bounded by the line \(\theta = \frac { 1 } { 2 } \pi\) and the arc of \(C\) joining the origin to the point where \(\theta = \frac { 1 } { 2 } \pi\) is
$$50 \left( b ^ { 2 } - 2 b + 2 \right) \mathrm { e } ^ { b } - 100$$
where \(b = \ln \left( 1 + \frac { 1 } { 2 } \pi \right)\).