| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2006 |
| Session | November |
| Topic | Volumes of Revolution |
The curve \(C\) has equation
$$y = x ^ { \frac { 1 } { 2 } } - \frac { 1 } { 3 } x ^ { \frac { 3 } { 2 } } + \lambda ,$$
where \(\lambda > 0\) and \(0 \leqslant x \leqslant 3\). The length of \(C\) is denoted by \(s\). Prove that \(s = 2 \sqrt { } 3\).
The area of the surface generated when \(C\) is rotated through one revolution about the \(x\)-axis is denoted by \(S\). Find \(S\) in terms of \(\lambda\).
The \(y\)-coordinate of the centroid of the region bounded by \(C\), the axes and the line \(x = 3\) is denoted by h. Given that \(\int _ { 0 } ^ { 3 } y ^ { 2 } \mathrm {~d} x = \frac { 3 } { 4 } + \frac { 8 \sqrt { } 3 } { 5 } \lambda + 3 \lambda ^ { 2 }\), show that
$$\lim _ { \lambda \rightarrow \infty } \frac { S } { h s } = 4 \pi$$