| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2006 |
| Session | November |
| Topic | Second order differential equations |
8 Given that
$$2 y ^ { 3 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 12 y ^ { 3 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + 6 y ^ { 2 } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 17 y ^ { 4 } = 13 \mathrm { e } ^ { - 4 x }$$
and that \(v = y ^ { 4 }\), show that
$$\frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 6 \frac { \mathrm {~d} v } { \mathrm {~d} x } + 34 v = 26 \mathrm { e } ^ { - 4 x }$$
Hence find the general solution for \(y\) in terms of \(x\).