| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2005 |
| Session | November |
| Topic | 3x3 Matrices |
10 It is given that the eigenvalues of the matrix \(\mathbf { M }\), where
$$\mathbf { M } = \left( \begin{array} { r r r }
4 & 1 & - 1
- 4 & - 1 & 4
0 & - 1 & 5
\end{array} \right)$$
are \(1,3,4\). Find a set of corresponding eigenvectors.
Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that
$$\mathbf { M } ^ { n } = \mathbf { P } \mathbf { D } \mathbf { P } ^ { - 1 }$$
where \(n\) is a positive integer.
Find \(\mathbf { P } ^ { - 1 }\) and deduce that
$$\lim _ { n \rightarrow \infty } 4 ^ { - n } \mathbf { M } ^ { n } = \left( \begin{array} { r r r }
- \frac { 1 } { 3 } & 0 & - \frac { 1 } { 3 }
\frac { 4 } { 3 } & 0 & \frac { 4 } { 3 }
\frac { 4 } { 3 } & 0 & \frac { 4 } { 3 }
\end{array} \right)$$