CAIE FP1 2006 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2006
SessionNovember
TopicVectors: Cross Product & Distances

9 With \(O\) as origin, the points \(A , B , C\) have position vectors $$\mathbf { i } , \quad \mathbf { i } + \mathbf { j } , \quad \mathbf { i } + \mathbf { j } + 2 \mathbf { k }$$ respectively. Find a vector equation of the common perpendicular of the lines \(A B\) and \(O C\). Show that the shortest distance between the lines \(A B\) and \(O C\) is \(\frac { 2 } { 5 } \sqrt { } 5\). Find, in the form \(a x + b y + c z = d\), an equation for the plane containing \(A B\) and the common perpendicular of the lines \(A B\) and \(O C\).