| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2005 |
| Session | November |
| Topic | 3x3 Matrices |
11 Find the rank of the matrix \(\mathbf { A }\), where
$$\mathbf { A } = \left( \begin{array} { r r r r }
1 & 1 & 2 & 3
4 & 3 & 5 & 16
6 & 6 & 13 & 13
14 & 12 & 23 & 45
\end{array} \right)$$
Find vectors \(\mathbf { x } _ { 0 }\) and \(\mathbf { e }\) such that any solution of the equation
$$\mathbf { A x } = \left( \begin{array} { r }
0
2
- 1
3
\end{array} \right)$$
can be expressed in the form \(\mathbf { x } _ { 0 } + \lambda \mathbf { e }\), where \(\lambda \in \mathbb { R }\).
Hence show that there is no vector which satisfies (*) and has all its elements positive.