| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2006 |
| Session | November |
| Topic | Implicit equations and differentiation |
10 The curve \(C\) has equation
$$y = x ^ { 2 } + \lambda \sin ( x + y ) ,$$
where \(\lambda\) is a constant, and passes through the point \(A \left( \frac { 1 } { 4 } \pi , \frac { 1 } { 4 } \pi \right)\). Show that \(C\) has no tangent which is parallel to the \(y\)-axis.
Show that, at \(A\),
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 - \frac { 1 } { 64 } \pi ( 4 - \pi ) ( \pi + 2 ) ^ { 2 }$$