Questions FP1 (1385 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2019 June Q10
Standard +0.3
10 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations $$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$ respectively, where \(a\) is a constant and \(a > 2\).
  1. Find the equations of the asymptotes of \(C _ { 1 }\).
  2. Find the equation of the oblique asymptote of \(C _ { 2 }\).
  3. Show that \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
  4. Find the coordinates of the stationary points of \(C _ { 2 }\).
  5. Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single diagram. [You do not need to calculate the coordinates of any points where \(C _ { 2 }\) crosses the axes.]
CAIE FP1 2019 June Q11 EITHER
Challenging +1.8
The curve \(C _ { 1 }\) has polar equation \(r ^ { 2 } = 2 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. The point on \(C _ { 1 }\) furthest from the line \(\theta = \frac { 1 } { 2 } \pi\) is denoted by \(P\). Show that, at \(P\), $$2 \theta \tan \theta = 1$$ and verify that this equation has a root between 0.6 and 0.7 .
    The curve \(C _ { 2 }\) has polar equation \(r ^ { 2 } = \theta \sec ^ { 2 } \theta\), for \(0 \leqslant \theta < \frac { 1 } { 2 } \pi\). The curves \(C _ { 1 }\) and \(C _ { 2 }\) intersect at the pole, denoted by \(O\), and at another point \(Q\).
  2. Find the exact value of \(\theta\) at \(Q\).
  3. The diagram below shows the curve \(C _ { 2 }\). Sketch \(C _ { 1 }\) on this diagram.
  4. Find, in exact form, the area of the region \(O P Q\) enclosed by \(C _ { 1 }\) and \(C _ { 2 }\).
CAIE FP1 2019 June Q11 OR
Challenging +1.8
The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & - 1 \\ 1 & - 2 & - 3 & a \\ 1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right) , \quad \left( \begin{array} { r } 2 \\ 0 \\ - 2 \\ 2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4 \\ - 1 \\ a \\ 2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x \\ y \\ z \\ t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1 \\ 1 \\ 1 \\ 1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2019 June Q1
Standard +0.3
1 Prove by mathematical induction that \(3 ^ { 3 n } - 1\) is divisible by 13 for every positive integer \(n\).
CAIE FP1 2019 June Q2
Standard +0.8
2 The curve \(C\) has polar equation \(r ^ { 2 } = \ln ( 1 + \theta )\), for \(0 \leqslant \theta \leqslant 2 \pi\).
  1. Sketch \(C\).
  2. Using the substitution \(u = 1 + \theta\), or otherwise, find the area of the region bounded by \(C\) and the initial line, leaving your answer in an exact form.
CAIE FP1 2019 June Q3
Moderate -0.3
3
  1. Write down the fifth roots of unity.
  2. Find all the roots of the equation $$z ^ { 10 } + z ^ { 5 } + 1 = 0$$ giving each root in the form \(\mathrm { e } ^ { \mathrm { i } \theta }\).
CAIE FP1 2019 June Q4
Challenging +1.8
4
  1. Use the method of differences to show that \(\sum _ { r = 1 } ^ { N } \frac { 1 } { ( 3 r + 1 ) ( 3 r - 2 ) } = \frac { 1 } { 3 } - \frac { 1 } { 3 ( 3 N + 1 ) }\).
  2. Find the limit, as \(N \rightarrow \infty\), of \(\sum _ { r = N + 1 } ^ { N ^ { 2 } } \frac { N } { ( 3 r + 1 ) ( 3 r - 2 ) }\).
CAIE FP1 2019 June Q5
Challenging +1.2
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 1 & 2 & 0 & 4 \\ 5 & 2 & 1 & - 3 \\ 4 & 0 & 1 & - 7 \\ - 2 & 4 & - 1 & \alpha \end{array} \right)$$ It is given that the rank of \(\mathbf { M }\) is 2 .
  1. Find the value of \(\alpha\) and state a basis for the range space of T .
  2. Obtain a basis for the null space of T .
CAIE FP1 2019 June Q6
Standard +0.8
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } } { k x - 1 }$$ where \(k\) is a positive constant.
  1. Obtain the equations of the asymptotes of \(C\).
  2. Find the coordinates of the stationary points of \(C\).
  3. Sketch \(C\).
CAIE FP1 2019 June Q7
Standard +0.8
7 The line \(l _ { 1 }\) passes through the points \(A ( - 3,1,4 )\) and \(B ( - 1,5,9 )\). The line \(l _ { 2 }\) passes through the points \(C ( - 2,6,5 )\) and \(D ( - 1,7,5 )\).
  1. Find the shortest distance between the lines \(l _ { 1 }\) and \(l _ { 2 }\).
  2. Find the acute angle between the line \(l _ { 2 }\) and the plane containing \(A , B\) and \(D\).
CAIE FP1 2019 June Q8
Standard +0.8
8 Find the particular solution of the differential equation $$9 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 6 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 50 \sin t$$ given that when \(t = 0 , x = 0\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\).
CAIE FP1 2019 June Q9
Challenging +1.2
9 A cubic equation \(x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) has real roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } & = - \frac { 5 } { 12 } \\ \alpha \beta \gamma & = - 12 \\ \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = 90 \end{aligned}$$
  1. Find the values of \(c\) and \(d\).
  2. Express \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\) in terms of \(b\).
  3. Show that \(b ^ { 3 } - 15 b + 126 = 0\).
  4. Given that \(3 + \mathrm { i } \sqrt { } ( 12 )\) is a root of \(y ^ { 3 } - 15 y + 126 = 0\), deduce the value of \(b\).
CAIE FP1 2019 June Q10
Challenging +1.8
10 Let \(I _ { n } = \int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 2 } \pi } \cot ^ { n } x \mathrm {~d} x\), where \(n \geqslant 0\).
  1. By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cot ^ { n + 1 } x \right)\), or otherwise, show that $$I _ { n + 2 } = \frac { 1 } { n + 1 } - I _ { n }$$ The curve \(C\) has equation \(y = \cot x\), for \(\frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  2. Find, in an exact form, the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the line \(x = \frac { 1 } { 4 } \pi\) and the \(x\)-axis.
CAIE FP1 2019 June Q11 EITHER
A \(3 \times 3\) matrix \(\mathbf { A }\) has distinct eigenvalues 2, 1, 3, with corresponding eigenvectors $$\left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right) , \quad \left( \begin{array} { r } - 1 \\ 0 \\ b \end{array} \right) , \quad \left( \begin{array} { r } 0 \\ 1 \\ - 1 \end{array} \right)$$ respectively, where \(b\) is a positive constant.
  1. Find \(\mathbf { A }\) in terms of \(b\).
  2. Find \(\mathbf { A } ^ { - 1 } \left( \begin{array} { r } 0 \\ 2 \\ - 2 \end{array} \right)\).
  3. It is given that $$\mathbf { A } ^ { n } \left( \begin{array} { l } 1 \\ 1 \\ 0 \end{array} \right) = \left( \begin{array} { l } 4 \\ 4 \\ 0 \end{array} \right) \quad \text { and } \quad \mathbf { A } ^ { n } \left( \begin{array} { r } - 1 \\ 0 \\ b \end{array} \right) = \left( \begin{array} { c } - 1 \\ 0 \\ b ^ { - 1 } \end{array} \right) .$$ Find the values of \(n\) and \(b\).
CAIE FP1 2019 June Q11 OR
Challenging +1.2
The positive variables \(y\) and \(t\) are related by $$y = a ^ { t }$$ where \(a\) is a positive constant.
  1. (a) By differentiating \(\ln y\) with respect to \(t\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} t } = a ^ { t } \ln a\).
    (b) Write down \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
  2. Determine the set of values of \(a\) for which the infinite series $$y + \frac { \mathrm { d } y } { \mathrm {~d} t } + \frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } + \frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} t ^ { 3 } } + \ldots$$ is convergent.
    A curve has parametric equations $$x = t ^ { a } , \quad y = a ^ { t }$$
  3. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) in terms of \(a\) and \(t\), and show that, when \(t = 2\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 2 ^ { 1 - 2 a } ( 1 - a + 2 \ln a ) \ln a$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2002 November Q1
Standard +0.3
1 Given that $$u _ { n } = \mathrm { e } ^ { n x } - \mathrm { e } ^ { ( n + 1 ) x }$$ find \(\sum _ { n = 1 } ^ { N } \| _ { n }\) in terms of \(N\) and \(x\). Hence determine the set of values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity for cases where this exists.
CAIE FP1 2002 November Q2
Standard +0.8
2 The equation $$x ^ { 4 } + x ^ { 3 } + A x ^ { 2 } + 4 x - 2 = 0$$ where \(A\) is a constant, has roots \(\alpha , \beta , \gamma , \delta\). Find a polynomial equation whose roots are $$\frac { 1 } { \alpha } , \frac { 1 } { \beta } , \frac { 1 } { \gamma } , \frac { 1 } { \delta }$$ Given that $$\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = \frac { 1 } { \alpha ^ { 2 } } + \frac { 1 } { \beta ^ { 2 } } + \frac { 1 } { \gamma ^ { 2 } } + \frac { 1 } { \delta ^ { 2 } }$$ find the value of \(A\).
CAIE FP1 2002 November Q3
Standard +0.8
3 It is given that, for \(n = 0,1,2,3 , \ldots\), $$a _ { n } = 17 ^ { 2 n } + 3 ( 9 ) ^ { n } + 20$$ Simplify \(a _ { n + 1 } - a _ { n }\), and hence prove by induction that \(a _ { n }\) is divisible by 24 for all \(n \geqslant 0\).
CAIE FP1 2002 November Q4
Challenging +1.2
4 It is given that, for \(n \geqslant 0\), $$I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } e ^ { - x ^ { 2 } } d x$$
  1. Find \(I _ { 1 }\) in terms of c .
  2. Show that $$I _ { n + 2 } = \frac { n + 1 } { 2 } I _ { n } - \frac { 1 } { 2 \mathrm { e } }$$
  3. Find \(I _ { 5 }\) in terms of \(e\).
CAIE FP1 2002 November Q5
Challenging +1.2
5 The curve \(C\) has polar equation \(r \theta = 1\), for \(0 < \theta \leqslant 2 \pi\).
  1. Use the fact that \(\frac { \sin \theta } { \theta }\) tends to 1 as \(\theta\) tends to 0 to show that the line with carresian equation \(y = 1\) is an asymptote to \(C\).
  2. Sketch \(C\). The points \(P\) and \(Q\) on \(C\) correspond to \(\theta = \frac { 1 } { 6 } \pi\) and \(\theta = \frac { 1 } { 3 } \pi\) respectively.
  3. Find the area of the sector \(O P Q\), where \(O\) is the origin.
  4. Show that the length of the are \(P Q\) is $$\int _ { \frac { 1 } { 6 } \pi } ^ { \frac { 1 } { 3 } \pi } \frac { \sqrt { } \left( 1 + \theta ^ { 2 } \right) } { \theta ^ { 2 } } \mathrm {~d} \theta$$
CAIE FP1 2002 November Q6
Standard +0.8
6 A curve has equation \(x ^ { 3 } + x y ^ { 2 } - y ^ { 3 } = 3\).
  1. Show that there is no point of the curve at which \(\frac { d y } { d x } = 0\).
  2. Find the values of \(\frac { d y } { d x }\) and \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 1 , - 1 )\).
CAIE FP1 2002 November Q7
Challenging +1.2
7 Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), show that
  1. \(z - \frac { 1 } { z } = 2 \mathrm { i } \sin \theta\).
  2. \(z ^ { n } + z ^ { - n } = 2 \cos n \theta\). Hence show that $$\sin ^ { 6 } \theta = \frac { 1 } { 32 } ( 10 - 15 \cos 2 \theta + 6 \cos 4 \theta - \cos 6 \theta )$$ Find a similar expression for \(\cos ^ { 6 } \theta\), and hence express \(\cos ^ { 6 } \theta - \sin ^ { 6 } \theta\) in the fom \(a \cos 2 \theta + b \cos 6 \theta\).
CAIE FP1 2002 November Q8
Challenging +1.2
8 The value of the assets of a large commercial organisation at time \(t\), measured in years, is \(\\) \left( 10 ^ { 8 } y + 10 ^ { 9 } \right)\(. The variables \)y\( and \)t$ are related by the differential equation $$\frac { d ^ { 2 } y } { d t ^ { 2 } } + 5 \frac { d y } { d t } + 6 y = 15 \cos 3 t - 3 \sin 3 t$$ Find \(y\) in terms of \(t\), given that \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = - 2\) when \(t = 0\). Show that, for large values of \(t\), the value of the assets is less than \(\\) 9.5 \times 10 ^ { 8 }$ for about a third of the time.
CAIE FP1 2002 November Q9
Challenging +1.2
9 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), which meet in the line \(/\), have vector equations $$\begin{aligned} & \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 1 } ( 2 \mathbf { i } + 3 \mathbf { k } ) + \phi _ { 1 } ( - 4 \mathbf { j } + 5 \mathbf { k } ) , \\ & \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 2 } ( 3 \mathbf { j } + \mathbf { k } ) + \phi _ { 2 } ( - \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) , \end{aligned}$$ respectively. Find a vector equation of the line \(l\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\). Find a vector equation of the plane \(\Pi _ { 3 }\) which contains \(l\) and which passes through the point with position vector \(4 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }\). Find also the equation of \(\Pi _ { 3 }\) in the form \(a x + b y + c z = d\). Deduce, or prove otherwise, that the system of equations $$\begin{aligned} & 6 x - 5 y - 4 z = - 32 \\ & 5 x - y + 3 z = 24 \\ & 9 x - 2 y + 5 z = 40 \end{aligned}$$ has an infinite number of solutions.
CAIE FP1 2002 November Q10
Challenging +1.8
10 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { H }\), where $$\mathbf { H } = \left( \begin{array} { r r r r } 1 & 2 & - 3 & - 5 \\ - 1 & 4 & 5 & 1 \\ 2 & 3 & 0 & - 3 \\ - 3 & 5 & 7 & 2 \end{array} \right)$$
  1. Find the dimension of the range space of T .
  2. Find a basis for the null space of \(T\).
  3. It is given that \(\mathbf { x }\) satisfies the equation $$\mathbf { H } \mathbf { x } = \left( \begin{array} { r } 2 \\ - 10 \\ - 1 \\ - 15 \end{array} \right)$$ Using the fact that $$\mathbf { H } \left( \begin{array} { r } 1 \\ - 3 \\ 1 \\ - 2 \end{array} \right) = \left( \begin{array} { r } 2 \\ - 10 \\ - 1 \\ - 15 \end{array} \right) ,$$ find the least possible value of \(| \mathbf { x } |\).
    [0pt] [For the vector \(\mathbf { x } = \left( \begin{array} { c } x _ { 1 } \\ x _ { 2 } \\ x _ { 3 } \\ x _ { 4 } \end{array} \right) , | \mathbf { x } | = \sqrt { } \left( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } + x _ { 4 } ^ { 2 } \right)\).]