CAIE FP1 2002 November — Question 1

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2002
SessionNovember
TopicSequences and series, recurrence and convergence

1 Given that $$u _ { n } = \mathrm { e } ^ { n x } - \mathrm { e } ^ { ( n + 1 ) x }$$ find \(\sum _ { n = 1 } ^ { N } \| _ { n }\) in terms of \(N\) and \(x\). Hence determine the set of values of \(x\) for which the infinite series $$u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots$$ is convergent and give the sum to infinity for cases where this exists.