| Exam Board | CAIE |
| Module | FP1 (Further Pure Mathematics 1) |
| Year | 2002 |
| Session | November |
| Topic | Vectors: Lines & Planes |
9 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), which meet in the line \(/\), have vector equations
$$\begin{aligned}
& \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 1 } ( 2 \mathbf { i } + 3 \mathbf { k } ) + \phi _ { 1 } ( - 4 \mathbf { j } + 5 \mathbf { k } ) ,
& \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 2 } ( 3 \mathbf { j } + \mathbf { k } ) + \phi _ { 2 } ( - \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) ,
\end{aligned}$$
respectively. Find a vector equation of the line \(l\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\).
Find a vector equation of the plane \(\Pi _ { 3 }\) which contains \(l\) and which passes through the point with position vector \(4 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }\). Find also the equation of \(\Pi _ { 3 }\) in the form \(a x + b y + c z = d\).
Deduce, or prove otherwise, that the system of equations
$$\begin{aligned}
& 6 x - 5 y - 4 z = - 32
& 5 x - y + 3 z = 24
& 9 x - 2 y + 5 z = 40
\end{aligned}$$
has an infinite number of solutions.