CAIE FP1 2002 November — Question 9

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2002
SessionNovember
TopicVectors: Lines & Planes

9 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), which meet in the line \(/\), have vector equations $$\begin{aligned} & \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 1 } ( 2 \mathbf { i } + 3 \mathbf { k } ) + \phi _ { 1 } ( - 4 \mathbf { j } + 5 \mathbf { k } ) ,
& \mathbf { r } = 2 \mathbf { i } + 4 \mathbf { j } + 6 \mathbf { k } + \theta _ { 2 } ( 3 \mathbf { j } + \mathbf { k } ) + \phi _ { 2 } ( - \mathbf { i } + \mathbf { j } + 2 \mathbf { k } ) , \end{aligned}$$ respectively. Find a vector equation of the line \(l\) in the form \(\mathbf { r } = \mathbf { a } + t \mathbf { b }\). Find a vector equation of the plane \(\Pi _ { 3 }\) which contains \(l\) and which passes through the point with position vector \(4 \mathbf { i } + 3 \mathbf { j } + 2 \mathbf { k }\). Find also the equation of \(\Pi _ { 3 }\) in the form \(a x + b y + c z = d\). Deduce, or prove otherwise, that the system of equations $$\begin{aligned} & 6 x - 5 y - 4 z = - 32
& 5 x - y + 3 z = 24
& 9 x - 2 y + 5 z = 40 \end{aligned}$$ has an infinite number of solutions.