10 The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations
$$y = \frac { a x } { x + 5 } \quad \text { and } \quad y = \frac { x ^ { 2 } + ( a + 10 ) x + 5 a + 26 } { x + 5 }$$
respectively, where \(a\) is a constant and \(a > 2\).
- Find the equations of the asymptotes of \(C _ { 1 }\).
- Find the equation of the oblique asymptote of \(C _ { 2 }\).
- Show that \(C _ { 1 }\) and \(C _ { 2 }\) do not intersect.
- Find the coordinates of the stationary points of \(C _ { 2 }\).
- Sketch \(C _ { 1 }\) and \(C _ { 2 }\) on a single diagram. [You do not need to calculate the coordinates of any points where \(C _ { 2 }\) crosses the axes.]