CAIE FP1 2019 June — Question 11 OR

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
Topic3x3 Matrices

The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix $$\mathbf { M } = \left( \begin{array} { r r r r } - 1 & 2 & 3 & 4
1 & 0 & 1 & - 1
1 & - 2 & - 3 & a
1 & 2 & 5 & 2 \end{array} \right) .$$
  1. For \(a \neq - 4\), the range space of T is denoted by \(V\).
    (a) Find the dimension of \(V\) and show that $$\left( \begin{array} { r } - 1
    1
    1
    1 \end{array} \right) , \quad \left( \begin{array} { r } 2
    0
    - 2
    2 \end{array} \right) \quad \text { and } \quad \left( \begin{array} { r } 4
    - 1
    a
    2 \end{array} \right)$$ form a basis for \(V\).
    (b) Show that if \(\left( \begin{array} { l } x
    y
    z
    t \end{array} \right)\) belongs to \(V\) then \(x + 2 y = t\).
  2. For \(a = - 4\), find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } - 1
    1
    1
    1 \end{array} \right)$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.