CAIE FP1 2019 June — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
TopicReduction Formulae

10 Let \(I _ { n } = \int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 2 } \pi } \cot ^ { n } x \mathrm {~d} x\), where \(n \geqslant 0\).
  1. By considering \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cot ^ { n + 1 } x \right)\), or otherwise, show that $$I _ { n + 2 } = \frac { 1 } { n + 1 } - I _ { n }$$ The curve \(C\) has equation \(y = \cot x\), for \(\frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  2. Find, in an exact form, the \(y\)-coordinate of the centroid of the region enclosed by \(C\), the line \(x = \frac { 1 } { 4 } \pi\) and the \(x\)-axis.