CAIE FP1 2019 June — Question 11 EITHER

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2019
SessionJune
Topic3x3 Matrices

A \(3 \times 3\) matrix \(\mathbf { A }\) has distinct eigenvalues 2, 1, 3, with corresponding eigenvectors $$\left( \begin{array} { l } 1
1
0 \end{array} \right) , \quad \left( \begin{array} { r } - 1
0
b \end{array} \right) , \quad \left( \begin{array} { r } 0
1
- 1 \end{array} \right)$$ respectively, where \(b\) is a positive constant.
  1. Find \(\mathbf { A }\) in terms of \(b\).
  2. Find \(\mathbf { A } ^ { - 1 } \left( \begin{array} { r } 0
    2
    - 2 \end{array} \right)\).
  3. It is given that $$\mathbf { A } ^ { n } \left( \begin{array} { l } 1
    1
    0 \end{array} \right) = \left( \begin{array} { l } 4
    4
    0 \end{array} \right) \quad \text { and } \quad \mathbf { A } ^ { n } \left( \begin{array} { r } - 1
    0
    b \end{array} \right) = \left( \begin{array} { c } - 1
    0
    b ^ { - 1 } \end{array} \right) .$$ Find the values of \(n\) and \(b\).